Patents by Inventor Amit KUNDU

Amit KUNDU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10923572
    Abstract: A layout of a semiconductor device is stored on a non-transitory computer-readable medium. The layout includes a first transistor in an active device region and a second transistor in a guard ring region. The first transistor includes a first channel region, a first gate structure across the first channel region, and a first source region and a first drain region on opposite sides of the first channel region. The second transistor includes a second channel region, a second gate structure across the second channel region, a second source region and a second drain region on opposite sides of the second channel region. The second channel region includes a semiconductor material having a higher thermal conductivity than a semiconductor material of the first channel region.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: February 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Amit Kundu, Jaw-Juinn Horng
  • Patent number: 10867109
    Abstract: An electromigration (EM) sign-off methodology that analyzes an integrated circuit design layout to identify heat sensitive structures, self-heating effects, heat generating structures, and heat dissipating structures. The EM sign-off methodology includes adjustments of an evaluation temperature for a heat sensitive structure by calculating the effects of self-heating within the temperature sensitive structure as well as additional heating and/or cooling as a function of thermal coupling to surrounding heat generating structures and/or heat sink elements located within a defined thermal coupling range.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsien Yu Tseng, Chun-Wei Chang, Szu-Lin Liu, Amit Kundu, Sheng-Feng Liu
  • Publication number: 20200105887
    Abstract: A layout of a semiconductor device is stored on a non-transitory computer-readable medium. The layout includes a first transistor in an active device region and a second transistor in a guard ring region. The first transistor includes a first channel region, a first gate structure across the first channel region, and a first source region and a first drain region on opposite sides of the first channel region. The second transistor includes a second channel region, a second gate structure across the second channel region, a second source region and a second drain region on opposite sides of the second channel region. The second channel region includes a semiconductor material having a higher thermal conductivity than a semiconductor material of the first channel region.
    Type: Application
    Filed: May 29, 2019
    Publication date: April 2, 2020
    Inventors: Amit KUNDU, Jaw-Juinn HORNG
  • Publication number: 20200065451
    Abstract: An electromigration (EM) sign-off methodology that analyzes an integrated circuit design layout to identify heat sensitive structures, self-heating effects, heat generating structures, and heat dissipating structures. The EM sign-off methodology includes adjustments of an evaluation temperature for a heat sensitive structure by calculating the effects of self-heating within the temperature sensitive structure as well as additional heating and/or cooling as a function of thermal coupling to surrounding heat generating structures and/or heat sink elements located within a defined thermal coupling range.
    Type: Application
    Filed: May 29, 2019
    Publication date: February 27, 2020
    Inventors: Hsien YU TSENG, Chun-Wei CHANG, Szu-Lin LIU, Amit KUNDU, Sheng-Feng LIU
  • Publication number: 20190131299
    Abstract: The present disclosure relates generally to integrated circuits, and more particularly to low-bias voltage reference circuits. The voltage reference circuits are capable of providing highly-accurate and temperature-insensitive outputs. Specifically, the present disclosure provides complementary-to-absolute-temperature circuits with low process variation and tunable temperature coefficient.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 2, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Amit Kundu, Chia-Hsin Hu, Jaw-Juinn Horng
  • Patent number: 10268228
    Abstract: A voltage reference circuit is provided. In some embodiments, the voltage reference circuit includes a MOS stack that includes two or more MOS transistors having a substantially same voltage threshold. The voltage reference circuit is configured to generate, via the MOS stack, a first voltage waveform having a first temperature co-efficient and a second voltage waveform having a second temperature co-efficient. In some embodiments, the first temperature co-efficient has a polarity that is opposite a polarity of the second temperature co-efficient. In some embodiments, the first voltage waveform and the second voltage waveform are used to generate a reference voltage waveform, where the reference voltage waveform is substantially temperature independent due to the opposite polarities of the first temperature co-efficient and the second temperature co-efficient.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 23, 2019
    Inventors: Amit Kundu, Jaw-Juinn Horng
  • Patent number: 10163899
    Abstract: The present disclosure relates generally to integrated circuits, and more particularly to low-bias voltage reference circuits. The voltage reference circuits are capable of providing highly-accurate and temperature-insensitive outputs. Specifically, the present disclosure provides complementary-to-absolute-temperature circuits with low process variation and tunable temperature coefficient.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Amit Kundu, Chia-Hsin Hu, Jaw-Juinn Horng
  • Patent number: 10090221
    Abstract: A method of forming a semiconductor device includes implanting dopants in a first region of the semiconductor device to form a source region. The method further includes forming a guard ring in a second region of the semiconductor device, the guard ring being separated from the source region by a first spacing. The method further includes depositing a first heat conductive layer over the source region, wherein the first heat conductive layer is directly coupled to the source region and directly coupled to the guard ring. The first heat conductive layer is configured to dissipate heat generated by the semiconductor device from the source region to the guard ring.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: October 2, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Amit Kundu, Jaw-Juinn Horng, Chung-Hui Chen
  • Publication number: 20180151562
    Abstract: The present disclosure relates generally to integrated circuits, and more particularly to low-bias voltage reference circuits. The voltage reference circuits are capable of providing highly-accurate and temperature-insensitive outputs. Specifically, the present disclosure provides complementary-to-absolute-temperature circuits with low process variation and tunable temperature coefficient.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 31, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Amit KUNDU, Chia-Hsin Hu, Jaw-Juinn Horng
  • Patent number: 9864393
    Abstract: In some embodiments, a circuit includes a first transistor, a second transistor, a resistive device and an amplifier. The first transistor includes a first drain and a first gate. The second transistor includes a second drain and a second gate. The resistive device is coupled between the first gate and the second gate. The amplifier includes a first input coupled to the first drain and a second input coupled to the second drain. The amplifier is configured to keep a voltage level at the first drain and that at the second drain equal to each other.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: January 9, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD
    Inventors: Jaw-Juinn Horng, Amit Kundu
  • Patent number: 9791879
    Abstract: A voltage reference circuit is provided that includes a first circuit, a second circuit and a third circuit. The first circuit has a first MOS transistor pair and the second circuit has a second MOS transistor pair. The first circuit is configured to provide a first voltage component that changes at a first rate having a first slope as a temperature to which the voltage reference circuit is subjected changes. The second circuit is configured to provide a second voltage component that changes at a second rate having a second slope as the temperature changes. The third circuit is configured to use the first voltage component and the second voltage component to generate the reference voltage component that changes at a fifth rate having a fifth slope as the temperature changes. The fifth slope is substantially equal to zero to promote insensitivity of the reference voltage component to temperature changes.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Jaw-Juinn Horng, Amit Kundu, Chung-Hui Chen, Yung-Chow Peng
  • Publication number: 20170185097
    Abstract: A voltage reference circuit is provided. In some embodiments, the voltage reference circuit includes a MOS stack that includes two or more MOS transistors having a substantially same voltage threshold. The voltage reference circuit is configured to generate, via the MOS stack, a first voltage waveform having a first temperature co-efficient and a second voltage waveform having a second temperature co-efficient. In some embodiments, the first temperature co-efficient has a polarity that is opposite a polarity of the second temperature co-efficient. In some embodiments, the first voltage waveform and the second voltage waveform are used to generate a reference voltage waveform, where the reference voltage waveform is substantially temperature independent due to the opposite polarities of the first temperature co-efficient and the second temperature co-efficient.
    Type: Application
    Filed: March 10, 2017
    Publication date: June 29, 2017
    Inventors: Amit Kundu, Jaw-Juinn Horng
  • Publication number: 20170084512
    Abstract: A method of forming a semiconductor device includes implanting dopants in a first region of the semiconductor device to form a source region. The method further includes forming a guard ring in a second region of the semiconductor device, the guard ring being separated from the source region by a first spacing. The method further includes depositing a first heat conductive layer over the source region, wherein the first heat conductive layer is directly coupled to the source region and directly coupled to the guard ring. The first heat conductive layer is configured to dissipate heat generated by the semiconductor device from the source region to the guard ring.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Inventors: Amit KUNDU, Jaw-Juinn HORNG, Chung-Hui CHEN
  • Patent number: 9594390
    Abstract: A voltage reference circuit is provided. In some embodiments, the voltage reference circuit includes a MOS stack that includes two or more MOS transistors having a substantially same voltage threshold. The voltage reference circuit is configured to generate, via the MOS stack, a first voltage waveform having a first temperature co-efficient and a second voltage waveform having a second temperature co-efficient. In some embodiments, the first temperature co-efficient has a polarity that is opposite a polarity of the second temperature co-efficient. In some embodiments, the first voltage waveform and the second voltage waveform are used to generate a reference voltage waveform, where the reference voltage waveform is substantially temperature independent due to the opposite polarities of the first temperature co-efficient and the second temperature co-efficient.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: March 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Amit Kundu, Jaw-Juinn Horng
  • Patent number: 9536790
    Abstract: A semiconductor device comprises a substrate, a source region over the substrate, and a guard ring over the substrate. The guard ring is separated from the source region by a first spacing. The semiconductor device also comprises a first heat conductive layer formed over couples the source region and the guard ring. The semiconductor device further comprises a first via over a first portion of the first heat conductive layer. The semiconductor device additionally comprises a second via separate from the first via over a second portion of the first conductive layer. The semiconductor device also comprises a second heat conductive layer over and coupling the first via and the second via. In use, the semiconductor device generates heat, and the heat dissipates, at least partially, from the source region through the first heat conductive layer to the guard ring and the substrate.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: January 3, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Amit Kundu, Jaw-Juinn Horng, Chung-Hui Chen
  • Patent number: 9536876
    Abstract: A circuit with a temperature detector includes a first FET and a second FET. Each of the first and second FETs has a channel structure having a non-planar structure. The second FET is in close proximity to the first FET. A gate of the second FET is separated from the first FET, and a source and drain of the second FET are shorted together. A resistance of the gate of the second FET between two terminals on the gate of the second FET varies with a temperature local to the first FET.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: January 3, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yung-Chow Peng, Amit Kundu, Szu-Lin Liu, Jaw-Juinn Horng
  • Publication number: 20160357212
    Abstract: In some embodiments, a circuit includes a first transistor, a second transistor, a resistive device and an amplifier. The first transistor includes a first drain and a first gate. The second transistor includes a second drain and a second gate. The resistive device is coupled between the first gate and the second gate. The amplifier includes a first input coupled to the first drain and a second input coupled to the second drain. The amplifier is configured to keep a voltage level at the first drain and that at the second drain equal to each other.
    Type: Application
    Filed: February 2, 2016
    Publication date: December 8, 2016
    Inventors: JAW-JUINN HORNG, AMIT KUNDU
  • Patent number: 9378314
    Abstract: A system and method for designing integrated circuits and predicting current mismatch in a metal oxide semiconductor (MOS) array. A first subset of cells in the MOS array is selected and current measured for each of these cells. Standard deviation of current for each cell in the first subset of cells is determined with respect to current of a reference cell. Standard deviation of local variation can be determined using the determined standard deviation of current for one or more cells in the first subset. Standard deviations of variation induced by, for example, poly density gradient effects, in the x and/or y direction of the array can then be determined and current mismatch for any cell in the array determined therefrom.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: June 28, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Amit Kundu, Jaw-Juinn Horng, Yung-Chow Peng, Shih-Cheng Yang, Chung-Kai Lin
  • Publication number: 20160147245
    Abstract: A voltage reference circuit is provided. In some embodiments, the voltage reference circuit includes a MOS stack that includes two or more MOS transistors having a substantially same voltage threshold. The voltage reference circuit is configured to generate, via the MOS stack, a first voltage waveform having a first temperature co-efficient and a second voltage waveform having a second temperature co-efficient. In some embodiments, the first temperature co-efficient has a polarity that is opposite a polarity of the second temperature co-efficient. In some embodiments, the first voltage waveform and the second voltage waveform are used to generate a reference voltage waveform, where the reference voltage waveform is substantially temperature independent due to the opposite polarities of the first temperature co-efficient and the second temperature co-efficient.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventors: Amit Kundu, Jaw-Juinn Horng
  • Publication number: 20150200249
    Abstract: A semiconductor device comprises a substrate, a source region over the substrate, and a guard ring over the substrate. The guard ring is separated from the source region by a first spacing. The semiconductor device also comprises a first heat conductive layer formed over couples the source region and the guard ring. The semiconductor device further comprises a first via over a first portion of the first heat conductive layer. The semiconductor device additionally comprises a second via separate from the first via over a second portion of the first conductive layer. The semiconductor device also comprises a second heat conductive layer over and coupling the first via and the second via. In use, the semiconductor device generates heat, and the heat dissipates, at least partially, from the source region through the first heat conductive layer to the guard ring and the substrate.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 16, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Amit KUNDU, Jaw-Juinn HORNG, Chung-Hui CHEN