Patents by Inventor Amitava Gupta

Amitava Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9081208
    Abstract: An electro-active optical cell is described including a layer of electro-active material, a front glass substrate member, and a back glass substrate member. The optical cell is capable of independently providing changeable optical power with the application of an electrical potential. The cell is also configured to be affixed to an external surface of a plastic substrate and to provide the changeable optical power, with at least one of the front substrate or the back substrate of the optical cell being an outermost optical layer. The layer of electro-active material may have a thickness less than 10 ?m, and the glass substrate members may each have a thickness approximately between 20 ?m and 500 ?m.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: July 14, 2015
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Ronald Blum, Amitava Gupta, William Kokonaski, Venkatramani Iyer
  • Publication number: 20150182331
    Abstract: Many modern implantable ophthalmic devices include electronic components, such as electro-active cells, that can leak harmful substances into the eye and/or surrounding tissue. In the implantable ophthalmic devices disclosed herein, electronic components are hermetically sealed within cavities formed by bonding together two or more glass wafers. Bonding the glass wafers together with laser fusion bonding, pressure bonding, or anodic bonding creates a seal that leaks at a rate of less than about 5×10?12 Pa m3s?1 when subjected to a helium leak test. Hermetically sealed feedthroughs formed of conductive material running through channels in the wafers provide electrical connections to components inside the sealed cavities. In some cases, the conductive material has a coefficient of thermal expansion (CTE) that is roughly equal to (e.g., within 10% of) the CTE of the glass wafers to minimize leakage due to thermally induced expansion and contraction of the conductive material and the glass wafer.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Applicant: Elenza, Inc.
    Inventors: Ronald D. BLUM, Amitava Gupta, Jean-Noel Fehr, Jean-Christophe Roulet, Urban Schnell, Walter Doll, Roland Michaely
  • Patent number: 9033495
    Abstract: A variable focus optical apparatus including a rigid, curved, transparent optical component; two transparent, distensible membranes attached to a periphery of the rigid optical component to define two cavities, a first cavity between the rigid optical component and a first membrane and a second cavity between the first membrane and a second membrane; and a variable amount of fluid filling each of the cavities, and a reservoir containing additional fluid and in fluid communication with the cavity, wherein the reservoir is configured to provide injection of fluid into the cavity or withdrawal of fluid out of the cavity in response to a force or an impulse.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 19, 2015
    Assignee: Adlens Beacon, Inc.
    Inventors: Amitava Gupta, Karim Haroud, Urban Schnell
  • Patent number: 9036264
    Abstract: A fluid lens assembly including a front rigid lens, a semi-flexible membrane that is adapted to be expanded from a minimum inflation level to a maximum inflation level, and a fluid layer therebetween. The front lens of the fluid lens assembly is configured to have a negative optical power. In an embodiment, the fluid lens assembly may be configured to have an overall negative optical power when the membrane is expanded to the maximum inflation level. In an embodiment, the fluid lens assembly can be configured to have an overall negative optical power when the membrane is expanded between the minimum inflation level and the maximum inflation level.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: May 19, 2015
    Assignee: Adlens Beacon, Inc.
    Inventors: Amitava Gupta, William Egan, Lisa Nibauer, Frank Stangota, Bruce Decker, Thomas M. McGuire, Urban Schnell, Karim Haroud, Hans Jaeger, Matthew Wallace Peterson, Daniel Senatore
  • Patent number: 9022563
    Abstract: Aspects of the present invention provide a lens comprising a non-rotationally symmetric aspheric optical element, surface or feature and a rotationally symmetric aspheric optical element, surface or feature. The non-rotationally symmetric aspheric optical feature can be a progressive power region. The non-rotationally symmetric aspheric optical feature and rotationally symmetric aspheric optical feature can be in optical communication when located on different surfaces of a lens or can be collapsed to occupy a single surface of a lens. The non-rotationally symmetric aspheric optical feature and rotationally symmetric aspheric optical feature can each contribute to the add power of a lens. Distortion (e.g., astigmatism) of a lens of the present invention can be reduced (e.g., globally and/or locally) by optically combing the non-rotationally symmetric aspheric optical feature with the rotationally symmetric aspheric optical feature.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: May 5, 2015
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Amitava Gupta, Ronald D. Blum
  • Patent number: 8992610
    Abstract: Many modern implantable ophthalmic devices include electronic components, such as electro-active cells, that can leak harmful substances into the eye and/or surrounding tissue. In the implantable ophthalmic devices disclosed herein, electronic components are hermetically scaled within cavities formed by bonding together two or more glass wafers. Bonding the glass wafers together with laser fusion bonding, pressure bonding, or anodic bonding creates a seal that leaks at a rate of less than about 5×10?12 Pa m3 s?1 when subjected to a helium leak test. Hermetically sealed feedthroughs formed of conductive material running through channels in the wafers provide electrical connections to components inside the sealed cavities. In some cases, the conductive material has a coefficient of thermal expansion (CTE) that is roughly equal to (e.g., within 10% of) the CTE of the glass wafers to minimize leakage due to thermally induced expansion and contraction of the conductive material and the glass wafer.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 31, 2015
    Assignee: Elenza, Inc.
    Inventors: Ronald D. Blum, Amitava Gupta, Jean-Noel Fehr, Jean-Christophe Roulet, Urban Schnell, Walter Doll, Roland Michaely
  • Publication number: 20150088253
    Abstract: Systems and methods of the disclosure relate to managing power consumption of an implantable device, such as an implantable ophthalmic device, that includes one or more rechargeable batteries and a processor operably coupled to the rechargeable batteries. The processor can be configured to implement a quick-charge process that includes charging each rechargeable battery for a first time interval using a first constant current, for a second time interval using a second constant current less than the first constant current, and for a third time interval using a constant voltage. This quick charge process is faster than conventional charging. The processor also manages discharge of two batteries in an alternating fashion so as to increase time between charging cycles, reduce the total number of charging cycles, and extend battery life.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 26, 2015
    Inventors: Walter Doll, Jean-Noel Fehr, Urban Schnell, Roelof Trip, Amitava Gupta
  • Publication number: 20150049296
    Abstract: In an embodiment, a hinge for a fluid-filled. lens assembly includes a base having a first end configured to connect to a temple arm of the lens assembly and a second end configured to connect to a frame of the lens assembly, wherein the base includes a gap that is shaped to allow for tubing to pass from the first end to the second end of the base. In an embodiment, the first end of the base includes a cammed surface configured to engage a surface of the temple arm. In an embodiment, the first and second ends of the base are configured to flex around a rotation axis of the hinge.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 19, 2015
    Inventors: Daniel Senatore, Matthew Wallace Peterson, Jonathan Downing, Amitava Gupta, William Egan, Lisa Nibauer, Frank Stangota, Bruce Decker, Thomas M. McGuire, Urban Schnell, Karim Haroud, Pascal Loser
  • Publication number: 20140335301
    Abstract: The invention relates to method for bonding at least two substrates, for example made from glass, silicon, ceramic, aluminum, or boron, by using an intermediate thin film metal layer for providing the bonding, said method comprising the following steps of: a) providing said two substrates; b) depositing said thin film metal layer on at least a part of a surface of a first substrate of the two substrates; c) bringing a surface of the second substrate into contact with said thin film metal layer on said surface of the first substrate such that a bonding between the second substrate and the thin film metal layer on the first substrate is provided; and d) at least locally strengthening the bonding between the second substrate and the thin film metal layer on the first substrate. The invention also relates to a device comprising two substrates, for example made from glass, silicon, ceramic, aluminum, or boron, and an intermediate thin film metal layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 13, 2014
    Inventors: Ronny Van 'T Oever, Marko Theodoor Blom, Jeroen Haneveld, Johannes Oonk, Marinus Bernardus Olde Riekerink, Peter Tijssen, Hendrik Jan Hildebrand Tigelaar, Jean-Noël Fehr, Jean-Christophe Roulet, Amitava Gupta
  • Publication number: 20140327950
    Abstract: Devices and methods related generally to electrochromic materials and their use. In some embodiments, the electrochromic materials are for use on an optical substrate, such as a lens, a semi-finished lens blank, and the like. Some embodiments include an electrochromic stack including nanostructured materials. Some embodiments include an electrochromic stack including nanostructured electrochromic materials. Some embodiments include one or more ion-conducting layers. Methods of making electrochromic stacks having nanostructured materials and/or ion-conducting layers are also discussed.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Inventors: Anita TRAJKOVSKA-BROACH, Amitava Gupta, William Kokonaski, Ronald D. Blum
  • Patent number: 8876283
    Abstract: In an embodiment, a hinge for a fluid-filled lens assembly includes a base having a first end configured to connect to a temple arm of the lens assembly and a second end configured to connect to a frame of the lens assembly, wherein the base includes a gap that is shaped to allow for tubing to pass from the first end to the second end of the base. In an embodiment, the first end of the base includes a cammed surface configured to engage a surface of the temple arm. In an embodiment, the first and second ends of the base are configured to flex around a rotation axis of the hinge.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 4, 2014
    Assignee: Adlens Beacon, Inc.
    Inventors: Daniel Senatore, Matthew Wallace Peterson, Jonathan Downing, Amitava Gupta, William Egan, Lisa Nibauer, Frank Stangota, Bruce Decker, Thomas M. McGuire, Urban Schnell, Karim Haroud, Pascal Loser
  • Publication number: 20140288660
    Abstract: A wrist implant requires minimal resection of the distal radius and preserves the sigmoid notch and articulation with the head of the distal ulna. The wrist implant generally includes a radius portion, a carpal portion and a carpal ball. The wrist implant includes a primary articulation and a secondary rotational articulation. The primary articulation occurs between the radius portion and the carpal ball. The secondary articulation occurs between the carpal ball and the carpal portion.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Applicant: AVANTA ORTHOPAEDICS, LLC
    Inventors: Amitava Gupta, David A. Leibel, William P. Cooney, III
  • Publication number: 20140240846
    Abstract: A non-round fluid lens assembly includes a non-round rigid lens and a flexible membrane attached to the non-round rigid lens, such that a cavity is formed between the non-round rigid lens and the flexible membrane. A reservoir in fluid communication with the cavity allows a fluid to be transferred into and out of the cavity so as to change the optical power of the fluid lens assembly. In an embodiment, a front surface of the non-round rigid lens is aspheric. Additionally or alternatively, a thickness of the flexible membrane may be contoured so that it changes shape in a spheric manner when fluid is transferred between the cavity and the reservoir.
    Type: Application
    Filed: May 12, 2014
    Publication date: August 28, 2014
    Applicant: Adlens Beacon, Inc.
    Inventors: Amitava GUPTA, Urban SCHNELL, Karim HAROUD, Hans JAEGER
  • Patent number: 8817381
    Abstract: An optical and mechanical design of a sealed, non-round fluid-filled lens capable of providing variation of optical power. The fluid lens includes at least three optical components: at least one mostly rigid optical disc, at least one mostly flexible optical membrane and a layer of a transparent fluid that is in communication via a fluid channel with a reservoir of excess fluid contained in a reservoir that can be accessed to augment the fluid volume inside the fluid lens to change the power of the fluid lens. The fluid lens is capable of providing correction of spherical and astigmatic errors, and utilizes contoured membranes to provide for a substantially constant desired spherical power over a substantially full field of view of a user.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: August 26, 2014
    Assignee: Adlens Beacon, Inc.
    Inventors: Amitava Gupta, Urban Schnell, Karim Haroud, Hans Jaeger, Lisa Nibauer, William Egan, Stefan Troller, Julien Sauvet, Christian Oggenfuss
  • Publication number: 20140226127
    Abstract: An actuator for a fluid-filled lens including a housing having a first and second end; a reservoir disposed within the housing is disclosed. In an embodiment, the actuator further includes a compression arm having a first end that is fixed at a pivot and a second end that is not fixed such that the compression arm flexes to compress the reservoir.
    Type: Application
    Filed: April 21, 2014
    Publication date: August 14, 2014
    Applicant: Adlens Beacon, Inc.
    Inventors: Daniel Senatore, Matthew Wallace Peterson, Jonathan Downing, Amitava Gupta, William Egan, Lisa Nibauer, Frank Stangota, Bruce Decker, Thomas M. McGuire, Urban Schnell, Karim Haroud, Pascal Loser
  • Patent number: 8758445
    Abstract: A wrist implant requires minimal resection of the distal radius and preserves the sigmoid notch and articulation with the head of the distal ulna. The wrist implant generally includes a radius portion, a carpal portion and a carpal ball. The wrist implant includes a primary articulation and a secondary rotational articulation. The primary articulation occurs between the radius portion and the carpal ball. The secondary articulation occurs between the carpal ball and the carpal portion.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: June 24, 2014
    Assignee: Avanta Orthopaedics, LLC
    Inventors: Amitava Gupta, David A. Leibel, William P. Cooney, III
  • Patent number: 8760767
    Abstract: A non-round fluid lens assembly includes a non-round rigid lens and a flexible membrane attached to the non-round rigid lens, such that a cavity is formed between the non-round rigid lens and the flexible membrane. A reservoir in fluid communication with the cavity allows a fluid to be transferred into and out of the cavity so as to change the optical power of the fluid lens assembly. In an embodiment, a front surface of the non-round rigid lens is aspheric. Additionally or alternatively, a thickness of the flexible membrane may be contoured so that it changes shape in a spheric manner when fluid is transferred between the cavity and the reservoir.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 24, 2014
    Assignee: Adlens Beacon, Inc.
    Inventors: Amitava Gupta, Urban Schnell, Karim Haroud, Hans Jaeger
  • Publication number: 20140160426
    Abstract: Aspects of the present invention provide an ophthalmic lens comprising at least one regressive and at least one non-regressive rotationally symmetric optical design element. The regressive and non-regressive optical design elements can be combined so as to form a desired optical power profile for the lens while simultaneously exploiting the different relative orientation of the astigmatic vectors of the constituent regressive and non-regressive design elements, thereby resulting in reduced unwanted astigmatism. The regressive and non-regressive rotationally symmetric optical design elements can be positioned on different lens surfaces and in optical communication or can be collapsed onto the same lens surface. The regressive and non-regressive rotationally symmetric optical design elements can each contribute to the total add power of an ophthalmic lens.
    Type: Application
    Filed: October 3, 2013
    Publication date: June 12, 2014
    Applicant: PixelOptics, Inc.
    Inventors: Amitava Gupta, Ronald Blum, Stefan Troller, Hans Jaeger, Julien Sauvet, Urban Schnell
  • Patent number: 8708486
    Abstract: An actuator for a fluid-filled lens including a housing having a first and a second end; a reservoir disposed within the housing. In an embodiment, a slider is slidingly disposed within the housing and disposed adjacent to the reservoir. In an embodiment, the actuator further includes a compression arm having a first end that is fixed and a second end that is not fixed, wherein the compression arm is disposed adjacent to the reservoir. Sliding the slider from one end of the housing to the other causes the slider to push the second end of the compression arm so as to compress the reservoir. In an embodiment, the slider includes a first end having a wedge shape configured to compress the reservoir. Sliding of the slider from one end of the housing to the other causes the first end of the slider to compress the reservoir.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 29, 2014
    Assignee: Adlens Beacon, Inc.
    Inventors: Daniel Senatore, Matthew Wallace Peterson, Jonathan Downing, Amitava Gupta, William Egan, Lisa Nibauer, Frank Stangota, Bruce Decker, Thomas M. McGuire, Urban Schnell, Karim Haroud, Pascal Loser
  • Publication number: 20140016089
    Abstract: A variable focus optical apparatus including a rigid, curved, transparent optical component; two transparent, distensible membranes attached to a periphery of the rigid optical component to define two cavities, a first cavity between the rigid optical component and a first membrane and a second cavity between the first membrane and a second membrane; and a variable amount of fluid filling each of the cavities, and a reservoir Containing additional fluid and in fluid communication with the cavity, wherein the reservoir is configured to provide injection of fluid into the cavity or withdrawal of fluid out of the cavity in response to a force or an impulse.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 16, 2014
    Applicant: Adlens Beacon, Inc.
    Inventors: Amitava Gupta, Karim Haroud, Urban Schnell