Patents by Inventor Amr Salahieh

Amr Salahieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220176088
    Abstract: The present technology relates to interatrial shunting systems and methods. In some embodiments, the present technology includes a system for shunting blood between a left atrium and a right atrium of a patient. The system can include a shunt having a lumen extending therethrough. When the shunt is implanted in the patient, the lumen is configured to fluidly couple the left atrium and the right atrium. The system can also include a sensor configured to be implanted in the patient and operably coupled to the shunt. The sensor can be configured to measure one or more parameters corresponding to a physiological parameter of the patient and/or a characteristic of the shunt. The system can further include an external component wirelessly coupled to the sensor. The external component can be worn by or otherwise adhered to the patient.
    Type: Application
    Filed: April 2, 2020
    Publication date: June 9, 2022
    Inventors: Amr Salahieh, Tom Saul, Brian Fahey
  • Publication number: 20220118228
    Abstract: Implant device recharging methods, devices, and systems. The implantable devices that are recharged can include one or more sensors. The implantable devices can include one or more receive transducers. A recharging catheter can emit energy to the one or more receive transducers to recharge an implantable device power source.
    Type: Application
    Filed: January 2, 2020
    Publication date: April 21, 2022
    Inventors: Brian J. Fahey, Amr Salahieh, Marwan Berrada, Tom Saul
  • Publication number: 20220105337
    Abstract: Devices for moving blood within a patient, and methods of doing so. The devices can include a pump portion that includes an impeller and a housing around the impeller, as well as a fluid lumen. The impeller can be activated to cause rotation of the impeller and thereby move fluid within the fluid lumen.
    Type: Application
    Filed: December 15, 2021
    Publication date: April 7, 2022
    Inventors: Amr SALAHIEH, Tom SAUL, Brady ESCH, Anna KERLO, Daniel HILDEBRAND, Daniel VARGHAI
  • Patent number: 11285002
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: March 29, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20220087554
    Abstract: The present technology generally relates to hemodynamic monitoring devices, as well as delivery systems adapted for the implantation of implantable pressure sensors or other implantable devices. In some embodiments, for example, the present technology includes a method of implanting a pressure sensing implant in a human patient. The method includes intravascularly advancing a delivery device carrying the pressure sensing implant toward a pulmonary artery of the patient, and sensing pressure in at least one of a right atrium, a right ventricle, and the pulmonary artery of the patient using a pressure sensing device carried by the delivery device. Sensing the pressure occurs before the pressure sensing implant is fully deployed in the pulmonary artery from the delivery device.
    Type: Application
    Filed: April 3, 2020
    Publication date: March 24, 2022
    Inventors: Amr Salahieh, Tom Saul, Brian Fahey, Marwan Berrada
  • Patent number: 11278398
    Abstract: The present invention provides an apparatus for endovascularly replacing a patient's heart valve. In some embodiments, the apparatus includes an expandable anchor supporting a replacement valve, the anchor and replacement valve being adapted for percutaneous delivery and deployment to replace the patient's heart valve, the anchor having a braid having atraumatic grasping elements adapted to grasp tissue in a vicinity of the patient's heart valve.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: March 22, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Publication number: 20220080178
    Abstract: An intravascular fluid movement device that includes an expandable member having a collapsed, delivery configuration and an expanded, deployed configuration, the expandable member having a proximal end and a distal end, a rotatable member disposed radially and axially within the expandable member, and a conduit coupled to the expandable member, the conduit at least partially defining a blood flow lumen between a distal end of the conduit and a proximal end of the conduit, the conduit disposed solely radially inside of the expandable member in a distal section of the expandable member.
    Type: Application
    Filed: October 18, 2021
    Publication date: March 17, 2022
    Inventors: Amr SALAHIEH, Claudio ARGENTO, Tom SAUL, Brady ESCH, Colin MIXTER, Peter BROWN, Anna KERLO, Daniel HILDEBRAND, Daniel VARGHAI
  • Patent number: 11229784
    Abstract: Devices for moving blood within a patient, and methods of doing so. The devices can include a pump portion that includes an impeller and a housing around the impeller, as well as a fluid lumen. The impeller can be activated to cause rotation of the impeller and thereby move fluid within the fluid lumen.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: January 25, 2022
    Assignee: SHIFAMED HOLDINGS, LLC
    Inventors: Amr Salahieh, Tom Saul, Brady Esch, Anna Kerlo, Daniel Hildebrand, Daniel Varghai
  • Publication number: 20210378815
    Abstract: An intraocular lens (TOL) for implantation within a capsular bag of a patient's eye comprises an optical structure and a haptic structure. The optical structure comprises a planar member, a plano convex member, and a fluid optical element defined between the planar member and the plano convex member. The fluid optical element has an optical power. The haptic structure couples the planar member and the plano convex member together at a peripheral portion of the optical structure. The haptic structure comprises a fluid reservoir in fluid communication with the fluid optical element and a peripheral structure for interfacing to the lens capsule. Shape changes of the lens capsule cause one or more of volume or shape changes to the fluid optical element in correspondence to deformations in the planar member to modify the optical power of the fluid optical element.
    Type: Application
    Filed: February 3, 2020
    Publication date: December 9, 2021
    Inventors: Amr Salahieh, Claudio R. Argento, Tom Saul, Bob Vaughan, Eric Willis
  • Patent number: 11185677
    Abstract: An intravascular fluid movement device that includes an expandable member having a collapsed, delivery configuration and an expanded, deployed configuration, the expandable member having a proximal end and a distal end, a rotatable member disposed radially and axially within the expandable member, and a conduit coupled to the expandable member, the conduit at least partially defining a blood flow lumen between a distal end of the conduit and a proximal end of the conduit, the conduit disposed solely radially inside of the expandable member in a distal section of the expandable member.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: November 30, 2021
    Assignee: SHIFAMED HOLDINGS, LLC
    Inventors: Amr Salahieh, Claudio Argento, Tom Saul, Brady Esch, Colin Mixter, Peter Brown, Anna Kerlo, Daniel Hildebrand, Daniel Varghai
  • Patent number: 11185408
    Abstract: A method for endovascularly replacing a patient's heart valve including the following steps: endovascularly delivering an anchor and a replacement valve supported within the anchor to a vicinity of the heart valve in a collapsed delivery configuration, the anchor having grasping elements adapted to grasp tissue in a vicinity of the heart valve; expanding the anchor, thereby rotating the grasping elements; and grasping the tissue with the rotating grasping elements.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: November 30, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Publication number: 20210251681
    Abstract: The present disclosure is directed to an expandable energy delivery assembly adapted to deliver electrical energy to tissue. The assembly includes an elongate device and an expandable portion. The expandable portion includes an inflatable element, a single helical electrode disposed on the inflatable element, and at least one irrigation aperture within the inflatable element. The inflatable element is secured to the elongate device and the single helical electrode makes between about 0.5 and about 1.5 revolutions around the inflatable element. The at least one irrigation aperture is adapted to allow fluid to flow from within the inflatable element to outside the inflatable element.
    Type: Application
    Filed: March 1, 2021
    Publication date: August 19, 2021
    Inventors: Amr Salahieh, Jonah Lepak, Emma Leung, John P. Claude, Tom Saul
  • Publication number: 20210228269
    Abstract: Systems for controlling ablation procedures that include a user interface. The user interface can include a display; and a memory with a computer executable method stored thereon, the computer executable method adapted to cause to be displayed on the display a plurality of interactive elements for controlling one or more aspects of the ablation.
    Type: Application
    Filed: April 18, 2017
    Publication date: July 29, 2021
    Inventors: Gerald Lyons, Amr Salahieh, Daniel Lundberg, Ron Avisa, Guy McNally, Rodica Schileru, Thomas Breton, Adnan Merchant, John Claude
  • Patent number: 11052226
    Abstract: Steerable medical devices and methods of use. In some embodiments, the steerable medical devices can be steered bi-directionally. In some embodiments the steerable medical devices include a first flexible tubular member and a second flexible tubular member secured together at a location distal to a steerable portion of the steerable medical device.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 6, 2021
    Assignee: Kalila Medical, Inc.
    Inventors: Amr Salahieh, Jonah Lepak, Emma Lepak, Tom Saul, Jean-Pierre Dueri, Joseph Creagan Trautman, Christopher T. Cheng, Richard Joseph Renati, Colin Mixter, Marc Bitoun
  • Publication number: 20210162114
    Abstract: An energy delivery system for delivering electrical energy to tissue, includes an elongate catheter member defining a longitudinal axis and dimensioned for passage within a body vessel and an expandable treatment member mounted to the catheter member. The treatment member includes an inflatable element adapted to transition between an initial condition and an at least partially expanded condition upon introduction of an anesthetic solution within the inflatable element, an electrode for delivering electrical energy to at least the nerve tissue associated with the body vessel to cause at least partial denervation thereof and at least one aperture dimensioned to permit passage of the anesthetic solution from the inflatable element to contact the body vessel whereby the solution at least enters the body vessel to at least partially anesthetize the nerve tissue therewithin. The electrode may be mounted to at least the inflatable element of the treatment member and may be generally helical.
    Type: Application
    Filed: November 23, 2020
    Publication date: June 3, 2021
    Inventors: Amr Salahieh, Tom Saul
  • Patent number: 10925724
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: February 23, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20200397566
    Abstract: An accommodating intraocular lens (AIOL) for implantation within a capsular bag of a patient's eye comprises first and second components coupled together to define an inner fluid chamber and an outer fluid reservoir. The inner region of the AIOL provides optical power with one or more of the shaped fluid within the inner fluid chamber or the shape of the first or second components. The fluid reservoir comprises a bellows region with one or more folds of the bellows extending circumferentially around an optical axis of the eye. The bellows engages the lens capsule, and a compliant fold region between the inner and outer bellows portions allows the profile of the AIOL to deflect when the eye accommodates for near vision. Fluid transfers between the inner fluid chamber and the outer fluid reservoir to provide optical power changes when the eye accommodates.
    Type: Application
    Filed: August 4, 2020
    Publication date: December 24, 2020
    Inventors: Amr SALAHIEH, Claudio R. ARGENTO, Tom Saul, Bob VAUGHAN, Eric WILLIS, Ali SALAHIEH
  • Publication number: 20200368019
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David Paul, Benjamin Sutton, Brian McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel Hildebrand
  • Publication number: 20200306031
    Abstract: An intraocular lens (TOL) for implantation within a capsular bag of a patient's eye comprises an optical structure and a haptic structure. The optical structure comprises a planar member, a plano convex member, and a fluid optical element defined between the planar member and the plano convex member. The fluid optical element has an optical power. The haptic structure couples the planar member and the plano convex member together at a peripheral portion of the optical structure. The haptic structure comprises a fluid reservoir in fluid communication with the fluid optical element and a peripheral structure for interfacing to the lens capsule. Shape changes of the lens capsule cause one or more of volume or shape changes to the fluid optical element in correspondence to deformations in the planar member to modify the optical power of the fluid optical element.
    Type: Application
    Filed: February 3, 2020
    Publication date: October 1, 2020
    Inventors: Amr Salahieh, Claudio R. Argento, Tom Saul, Bob Vaughan, Eric Willis
  • Patent number: 10772724
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: September 15, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David Paul, Benjamin Sutton, Brian McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel Hildebrand