Patents by Inventor Amy H. Chu

Amy H. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11180790
    Abstract: A reagent for detecting an analyte comprises a flavoprotein enzyme, a mediator such as a phenothiazine mediator, at least one surfactant, a polymer and a buffer. The reagent may be used with an electrochemical test sensor that includes a plurality of electrodes.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: November 23, 2021
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Amy H. Chu, Karen L. Marfurt, Brenda L. Tudor, Mary Ellen Warchal-Windham, Boru Zhu
  • Patent number: 11091790
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 17, 2021
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Publication number: 20200270668
    Abstract: A reagent for detecting an analyte comprises a flavoprotein enzyme, a mediator such as a phenothiazine mediator, at least one surfactant, a polymer and a buffer. The reagent may be used with an electrochemical test sensor that includes a plurality of electrodes.
    Type: Application
    Filed: May 13, 2020
    Publication date: August 27, 2020
    Inventors: Amy H. Chu, Karen L. Marfurt, Brenda L. Tudor, Mary Ellen Warchal-Windham, Boru Zhu
  • Patent number: 10696998
    Abstract: A reagent for detecting an analyte comprises a flavoprotein enzyme, a mediator such as a phenothiazine mediator, at least one surfactant, a polymer and a buffer. The reagent may be used with an electrochemical test sensor that includes a plurality of electrodes.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: June 30, 2020
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Amy H. Chu, Karen L. Marfurt, Brenda L. Tudor, Mary Ellen Warchal-Windham, Boru Zhu
  • Publication number: 20190249214
    Abstract: A reagent composition containing GDH-PQQ as an enzyme-co-factor and screen-printed on working and counter electrodes of electrochemical biosensors, maintains activity of the enzyme reagents by proper selection of components. A preferred composition includes hydrophilic polymers, amorphous untreated silica, buffers, surfactants, and a mediator.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 15, 2019
    Inventors: Amy H. Chu, Hope G. Spradlin
  • Publication number: 20190106728
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 11, 2019
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: 10190150
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: January 29, 2019
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Publication number: 20170349929
    Abstract: A reagent for detecting an analyte comprises a flavoprotein enzyme, a mediator such as a phenothiazine mediator, at least one surfactant, a polymer and a buffer. The reagent may be used with an electrochemical test sensor that includes a plurality of electrodes.
    Type: Application
    Filed: August 21, 2017
    Publication date: December 7, 2017
    Inventors: Amy H. Chu, Karen L. Marfurt, Brenda L. Tudor, Mary Ellen Warchal-Windham, Boru Zhu
  • Patent number: 9664638
    Abstract: A biosensor system for determining the concentration of an analyte in a sample includes a plurality of test sensors, and includes a container including a desiccant and the plurality of test sensors, sealed in the container. When the container is stored for two weeks at a temperature of 50° C., and each test sensor is subsequently removed from the container, connected through the at least two conductors to a measurement device and then contacted with one of a plurality of samples including an analyte, where the plurality of samples has analyte concentrations that span the range of 50 mg/dL-600 mg/dL, and the analyte concentration in each sample is determined by the test sensor and the measuring device, the bias of each determined analyte concentration may be within ±10 mg/dL or ±10%, and the coefficient of variation of the determined analyte concentrations may be at most 2.5%.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: May 30, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Amy H. Chu, Mary Ellen Warchal-Windham
  • Publication number: 20160084790
    Abstract: A biosensor system for determining the concentration of an analyte in a sample includes a plurality of test sensors, and includes a container including a desiccant and the plurality of test sensors, sealed in the container. When the container is stored for two weeks at a temperature of 50° C., and each test sensor is subsequently removed from the container, connected through the at least two conductors to a measurement device and then contacted with one of a plurality of samples including an analyte, where the plurality of samples has analyte concentrations that span the range of 50 mg/dL-600 mg/dL, and the analyte concentration in each sample is determined by the test sensor and the measuring device, the bias of each determined analyte concentration may be within ±10 mg/dL or ±10%, and the coefficient of variation of the determined analyte concentrations may be at most 2.5%.
    Type: Application
    Filed: December 3, 2015
    Publication date: March 24, 2016
    Inventors: Amy H. Chu, Mary Ellen Warchal-Windham
  • Patent number: 9233788
    Abstract: A biosensor system for determining the concentration of an analyte in a sample includes a plurality of test sensors, and includes a container including a desiccant and the plurality of test sensors, sealed in the container. When the container is stored for two weeks at a temperature of 50° C., and each test sensor is subsequently removed from the container, connected through the at least two conductors to a measurement device and then contacted with one of a plurality of samples including an analyte, where the plurality of samples has analyte concentrations that span the range of 50 mg/dL-600 mg/dL, and the analyte concentration in each sample is determined by the test sensor and the measuring device, the bias of each determined analyte concentration may be within ±10 mg/dL or ±10%, and the coefficient of variation of the determined analyte concentrations may be at most 2.5%.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 12, 2016
    Assignee: Bayer HealthCare LLC
    Inventors: Amy H. Chu, Mary Ellen Warchal-Windham
  • Publication number: 20150176054
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 25, 2015
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Publication number: 20150104561
    Abstract: A test sensor reagent for measuring the concentration of analytes in body fluids includes cellulose polymers for improving the stability of the test sensor and reducing the total assay time. The test sensor reagent also includes an enzyme, an electron transfer mediator and a rheological additive.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Amy H. Chu, Andrew J. Edelbrock, Hope G. Spradlin
  • Patent number: 9005527
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 14, 2015
    Assignee: Bayer Healthcare LLC
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Publication number: 20150076003
    Abstract: A reagent composition containing GDH-PQQ as an enzyme-co-factor and screen-printed on working and counter electrodes of electrochemical biosensors, maintains activity of the enzyme reagents by proper selection of components. A preferred composition includes hydrophilic polymers, amorphous untreated silica, buffers, surfactants, and a mediator.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 19, 2015
    Inventors: Amy H. Chu, Hope G. Spradlin
  • Patent number: 8940153
    Abstract: A test sensor reagent for measuring the concentration of analytes in body fluids includes cellulose polymers for improving the stability of the test sensor and reducing the total assay time. The test sensor reagent also includes an enzyme, an electron transfer mediator and a rheological additive.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: January 27, 2015
    Assignee: Bayer Healthcare LLC
    Inventors: Amy H. Chu, Andrew J. Edelbrock, Hope G. Spradlin
  • Patent number: 8921065
    Abstract: A reagent composition containing GDH-PQQ as an enzyme-co-factor and screen-printed on working and counter electrodes of electrochemical biosensors, maintains activity of the enzyme reagents by proper selection of components. A preferred composition includes hydrophilic polymers, amorphous untreated silica, buffers, surfactants, and a mediator. For example, the biosensor is useful in the amperometric determination of glucose.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: December 30, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Amy H. Chu, Hope G. Spradlin
  • Patent number: 8871069
    Abstract: A biosensor system for determining the concentration of an analyte in a sample is disclosed that includes a reaction means for selectively performing a redox reaction of an analyte, and a measurement means for measuring a rate of the redox reaction of the analyte. The reaction means includes a binder, a buffer salt, a mediator including at most 20% (w/w) of an inorganic, non-transition metal salt, and an enzyme system. The measurement means includes at least two conductors. The measurement means measures an output signal value from the reaction means at a maximum kinetic performance within at most 7 seconds of introducing a sample to the reaction means, where the output signal value is responsive to the concentration of the analyte in the sample, and the measurement means determines at least one ?S value responsive to at least one error parameter.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: October 28, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Amy H. Chu, Huan-Ping Wu, Boru Zhu
  • Publication number: 20130334066
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 19, 2013
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Publication number: 20130186755
    Abstract: A biosensor system for determining the concentration of an analyte in a sample includes a plurality of test sensors, and includes a container including a desiccant and the plurality of test sensors, sealed in the container. When the container is stored for two weeks at a temperature of 50° C., and each test sensor is subsequently removed from the container, connected through the at least two conductors to a measurement device and then contacted with one of a plurality of samples including an analyte, where the plurality of samples has analyte concentrations that span the range of 50 mg/dL-600 mg/dL, and the analyte concentration in each sample is determined by the test sensor and the measuring device, the bias of each determined analyte concentration may be within ±10 mg/dL or ±10%, and the coefficient of variation of the determined analyte concentrations may be at most 2.5%.
    Type: Application
    Filed: July 19, 2012
    Publication date: July 25, 2013
    Applicant: BAYER HEALTHCARE LLC - DIABETES CARE
    Inventors: Amy H. Chu, Mary Ellen Warchal-Windham