Patents by Inventor An Steegen

An Steegen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050118757
    Abstract: A CMOS silicide metal integration scheme that allows for the incorporation of silicide contacts (S/D and gates) and metal silicide gates using a self-aligned process (salicide) as well as one or more lithography steps is provided. The integration scheme of the present invention minimizes the complexity and cost associated in fabricating a CMOS structure containing silicide contacts and silicide gate metals.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 2, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Jakub Kedzierski, Victor Ku, Christian Lavoie, Vijay Narayanan, An Steegen
  • Patent number: 6891192
    Abstract: A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: May 10, 2005
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Dureseti Chidambarrao, Oleg G. Gluschenkov, An L. Steegen, Haining S. Yang
  • Publication number: 20050093076
    Abstract: A method for manufacturing a device including an n-type device and a p-type device. In an aspect of the invention, the method involves doping a portion of a semiconductor substrate and forming a gap in the semiconductor substrate by removing at least a portion of the doped portion of the semiconductor substrate. The method further involves growing a strain layer in at least a portion of the gap in the semiconductor substrate. For the n-type device, the strain layer is grown on at least a portion which is substantially directly under a channel of the n-type device. For the p-type device, the strain layer is grown on at least a portion which is substantially directly under a source region or drain region of the p-type device and not substantially under a channel of the p-type device.
    Type: Application
    Filed: November 5, 2003
    Publication date: May 5, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: An Steegen, Haining Yang, Ying Zhang
  • Patent number: 6876040
    Abstract: A SRAM cell fabricated in SSOI (selective silicon on insulator) comprises cross coupled PFET pull-up devices P1, P2 and NFET pull-down devices N1, N2, with the P1, P2 devices being connected to the power supply and the N1, N2 devices being connected to the ground. A first passgate NL is coupled between a first bitline and the junction of the devices P1 and N1, with its gate coupled to a wordline, and a second passgate NR is coupled between a second bitline and the junction of devices P2 and N2, with its gate coupled to the wordline. Each of the pull-up devices P1, P2, the pull-down devices N1, N2, and the first and second passgates NL, NR are fabricated with selective SOI, with buried oxide being selectively provided under the drains of the pull-up devices P1 and P2, the drains of the pull-down devices N1 and N2, and the sources and drains of the passgate devices NL and NR.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: April 5, 2005
    Assignee: International Business Machines Corporation
    Inventors: Hsingjen Wann, Ying Zhang, Robert C. Wong, An Steegen
  • Publication number: 20050064690
    Abstract: Silicide is introduced into the gate region of a CMOS device through different process options for both conventional and replacement gate types processes. Placement of silicide in the gate itself, introduction of the silicide directly in contact with the gate dielectric, introduction of the silicide as a fill on top of a metal gate all ready in place, and introduction the silicide as a capping layer on polysilicon or on the existing metal gate, are presented. Silicide is used as an option to connect between PFET and NFET devices of a CMOS structure. The processes protect the metal gate while allowing for the source and drain silicide to be of a different silicide than the gate silicide. A semiconducting substrate is provided having a gate with a source and a drain region. A gate dielectric layer is deposited on the substrate, along with a metal gate layer. The metal gate layer is then capped with a silicide formed on top of the gate, and conventional formation of the device then proceeds.
    Type: Application
    Filed: September 18, 2003
    Publication date: March 24, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ricky Amos, Douglas Buchanan, Cyril Cabral, Evgeni Gousev, Victor Ku, An Steegen
  • Publication number: 20050064687
    Abstract: A method for manufacturing an integrated circuit having a plurality of semiconductor devices including an n-type field effect transistor and a p-type field effect transistor on a semiconductor wafer by creating a spacer having a first width for the n-type field effect transistor and creating a spacer having a second width for the p-type field effect transistor, the first width being greater than the second width and depositing silicide material on the semiconductor wafer such that tensile mechanical stresses are formed within a channel of the n-type field effect transistor and compressive stresses are formed within a channel of the p-type field effect transistor.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 24, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dureseti Chidambarrao, Omer Dokumaci, Rajesh Rengarajan, An Steegen
  • Patent number: 6869866
    Abstract: A method for manufacturing an integrated circuit having a plurality of semiconductor devices including an n-type field effect transistor and a p-type field effect transistor on a semiconductor wafer by creating a spacer having a first width for the n-type field effect transistor and creating a spacer having a second width for the p-type field effect transistor, the first width being greater than the second width and depositing silicide material on the semiconductor wafer such that tensile mechanical stresses are formed within a channel of the n-type field effect transistor and compressive stresses are formed within a channel of the p-type field effect transistor.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: March 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Omer H. Dokumaci, Rajesh Rengarajan, An L. Steegen
  • Publication number: 20050051854
    Abstract: A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure is first formed on an etch stop layer provided on a semiconductor substrate. A pair of spacers is provided on sidewalls of the sacrificial gate structure. The sacrificial gate structure is then removed, forming an opening. Subsequently, a metal gate including an first layer of metal such as tungsten, a diffusion barrier such as titanium nitride, and a second layer of metal such as tungsten is formed in the opening between the spacers.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 10, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Paul Jamison, Victor Ku, Ying Li, Vijay Narayanan, An Steegen, Yun-Yu Wang, Kwong Wong
  • Publication number: 20050029601
    Abstract: A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
    Type: Application
    Filed: August 4, 2003
    Publication date: February 10, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huajie Chen, Dureseti Chidambarrao, Oleg Gluschenkov, An Steegen, Haining Yang