Patents by Inventor Ana R. Londergan

Ana R. Londergan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150099371
    Abstract: Systems, methods and apparatus for processing a substrate are described. A reactor includes a reaction chamber, a composite nozzle, and a reaction chamber outlet. The composite nozzle extends along a side of the chamber and includes a first nozzle and a second nozzle separate from and parallel the first nozzle. Each nozzle includes a body extending along an axis of elongation, an inlet providing communication between at least one source of a common species and an inner volume of the body, and holes spaced along the axis. The holes provide fluid communication between the inner volume and the chamber. The outlet is configured to allow flow from the composite nozzle through the chamber to the outlet. The first nozzle inlet is positioned at a first end of the first body, and the second nozzle inlet is positioned at a second end of the second body. The second end is opposite the first end of the first body.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ana R. Londergan, Sandeep K. Giri, Teruo Sasagawa, Shih-chou Chiang, Tsutomu Satoyoshi, Tanaka Seiji
  • Publication number: 20150099359
    Abstract: Systems, methods and apparatus for processing a substrate are disclosed. A reactor for processing a substrate includes a reaction chamber, a substrate support, a nozzle, and an outlet. The chamber is configured to process a single substrate on the substrate support. The nozzle extends along an axis of elongation along a side of the chamber. The nozzle includes a nozzle body forming an inner volume, an inlet providing fluid communication between a reactant source and the inner volume, and a plurality of holes spaced along the axis of elongation. The holes provide fluid communication between the inner volume of the nozzle body and the reaction chamber. The nozzle is configured such that fluid conductance through the holes increases with increasing distance from the inlet. The outlet is configured to allow flow from the nozzle through the reaction chamber to the outlet. The flow is parallel to a major surface of the substrate.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ana R. Londergan, Sandeep K. Giri, Teruo Sasagawa, Shih Chou Chiang
  • Publication number: 20140349469
    Abstract: This disclosure provides systems, methods and apparatus for processing multiple substrates in a processing tool. An apparatus for processing substrates can include a process chamber, a common reactant source, and a common exhaust pump. The process chamber can be configured to process multiple substrates. The process chamber can include a plurality of stacked individual subchambers. Each subchamber can be configured to process one substrate. The common reactant source can be configured to provide reactant to each of the subchambers in parallel. The common exhaust pump can be connected to each of the subchambers.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 27, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Teruo Sasagawa, Sandeep K. Giri, Ana R. Londergan, Shih-chou Chiang
  • Publication number: 20140267756
    Abstract: This disclosure provides systems, methods and apparatus for forming microbolometers on glass substrates. In one aspect, the formation of microbolometers on glass substrates can reduce the size and cost of the resultant array and associated circuitry. In one aspect, a portion of the measurement and control circuitry can be formed by thin-film deposition on the glass substrate, while sensitive measurement and control circuitry can be formed on ancillary CMOS substrates. In one aspect, the microbolometers may be packaged using a variety of techniques, including a wafer-level packaging process or a pixel-level packaging process.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Evgeni Gousev, David W. Burns, Nicholas I. Buchan, Ana R. Londergan
  • Patent number: 8536059
    Abstract: Etching equipment and methods are disclosed herein for more efficient etching of sacrificial material from between permanent MEMS structures. An etching head includes an elongate etchant inlet structure, which may be slot-shaped or an elongate distribution of inlet holes. A substrate is supported in proximity to the etching head in a manner that defines a flow path substantially parallel to the substrate face, and permits relative motion for the etching head to scan across the substrate.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: September 17, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Khurshid Syed Alam, Evgeni Gousev, Marc Maurice Mignard, David Heald, Ana R. Londergan, Philip Don Floyd
  • Publication number: 20120206462
    Abstract: Devices, methods, and systems comprising a MEMS device, for example, an interferometric modulator, that comprises a cavity in which a layer coats multiple surfaces. The layer is conformal or non-conformal. In some embodiments, the layer is formed by atomic layer deposition (ALD). Preferably, the layer comprises a dielectric material. In some embodiments, the MEMS device also exhibits improved characteristics, such as improved electrical insulation between moving electrodes, reduced stiction, and/or improved mechanical properties.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 16, 2012
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ana R. Londergan, Bangalore R. Natarajan, Evgeni Gousev, James Randolph Webster, David Heald
  • Patent number: 8164815
    Abstract: Devices, methods, and systems comprising a MEMS device, for example, an interferometric modulator, that comprises a cavity in which a layer coats multiple surfaces. The layer is conformal or non-conformal. In some embodiments, the layer is formed by atomic layer deposition (ALD). Preferably, the layer comprises a dielectric material. In some embodiments, the MEMS device also exhibits improved characteristics, such as improved electrical insulation between moving electrodes, reduced stiction, and/or improved mechanical properties.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 24, 2012
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventors: Ana R. Londergan, Bangalore R. Natarajan, Evgeni Gousev, James Randolph Webster, David Heald
  • Publication number: 20110253046
    Abstract: A gas distribution system for a reactor having at least two distinct gas source orifice arrays displaced from one another along an axis defined by a gas flow direction from the gas source orifice arrays towards a work-piece deposition surface such that at least a lower one of the gas source orifice arrays is located between a higher one of the gas source orifice arrays and the work-piece deposition surface. Orifices in the higher one of the gas source orifice arrays may spaced an average of 0.2-0.8 times a distance between the higher one of the gas source orifice arrays and the work-piece deposition surface, while orifices in the lower one of the gas source orifice arrays may be spaced an average of 0.1-0.4 times a distance between the higher one of the gas source orifice array and the work-piece deposition surface.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 20, 2011
    Inventors: Jeremie J. Dalton, M. Ziaul Karim, Ana R. Londergan
  • Patent number: 7981472
    Abstract: A method of introducing gasses through a gas distribution system into a reactor involves flowing the gasses through at least two distinct gas source orifice arrays displaced from one another along an axis defined by a gas flow direction from the gas source orifice arrays towards a work-piece. During different time intervals, a purge gas and different reactive precursors are flowed into the reactor from different ones of the gas source orifice arrays. One of the precursors may be associated with a soft saturating atomic layer deposition half reaction and another of the precursors associated with a strongly saturating atomic layer deposition half reaction. An upper one of the gas source orifice arrays may be a relatively planar gas orifice array.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: July 19, 2011
    Assignee: Aixtron, Inc.
    Inventors: Jeremie J. Dalton, M. Ziaul Karim, Ana R. Londergan
  • Patent number: 7981473
    Abstract: A process in which a wafer is exposed to a first chemically reactive precursor dose insufficient to result in a maximum saturated ALD deposition rate on the wafer, and then to a second chemically reactive precursor dose, the precursors being distributed in a manner so as to provide substantially uniform film deposition. The second chemically reactive precursor dose may likewise be insufficient to result in a maximum saturated ALD deposition rate on the wafer or, alternatively, sufficient to result in a starved saturating deposition on the wafer. The process may or may not include purges between the precursor exposures, or between one set of exposures and not another.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: July 19, 2011
    Assignee: Aixtron, Inc.
    Inventors: Gi Youl Kim, Anuranjan Srivastava, Thomas E. Seidel, Ana R. Londergan, Sasangan Ramanathan
  • Publication number: 20100245979
    Abstract: Devices, methods, and systems comprising a MEMS device, for example, an interferometric modulator, that comprises a cavity in which a layer coats multiple surfaces. The layer is conformal or non-conformal. In some embodiments, the layer is formed by atomic layer deposition (ALD). Preferably, the layer comprises a dielectric material. In some embodiments, the MEMS device also exhibits improved characteristics, such as improved electrical insulation between moving electrodes, reduced stiction, and/or improved mechanical properties.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 30, 2010
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ana R. Londergan, Bangalore R. Natarajan, Evgeni Gousev, James Randolph Webster, David Heald
  • Publication number: 20100219155
    Abstract: Etching equipment and methods are disclosed herein for more efficient etching of sacrificial material from between permanent MEMS structures. An etching head includes an elongate etchant inlet structure, which may be slot-shaped or an elongate distribution of inlet holes. A substrate is supported in proximity to the etching head in a manner that defines a flow path substantially parallel to the substrate face, and permits relative motion for the etching head to scan across the substrate.
    Type: Application
    Filed: February 18, 2008
    Publication date: September 2, 2010
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Khurshid Syed Alam, Evgeni Gousev, Marc Maurice Mignard, David Heald, Ana R. Londergan, Philip Don Floyd
  • Patent number: 7733552
    Abstract: Devices, methods, and systems comprising a MEMS device, for example, an interferometric modulator, that comprises a cavity in which a layer coats multiple surfaces. The layer is conformal or non-conformal. In some embodiments, the layer is formed by atomic layer deposition (ALD). Preferably, the layer comprises a dielectric material. In some embodiments, the MEMS device also exhibits improved characteristics, such as improved electrical insulation between moving electrodes, reduced stiction, and/or improved mechanical properties.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: June 8, 2010
    Assignee: Qualcomm Mems Technologies, Inc
    Inventors: Ana R. Londergan, Bangalore R. Natarajan, Evgeni Gousev, James Randolph Webster, David Heald
  • Publication number: 20090324829
    Abstract: A gas distribution system for a reactor having at least two distinct gas source orifice arrays displaced from one another along an axis defined by a gas flow direction from the gas source orifice arrays towards a work-piece deposition surface such that at least a lower one of the gas source orifice arrays is located between a higher one of the gas source orifice arrays and the work-piece deposition surface. Orifices in the higher one of the gas source orifice arrays may spaced an average of 0.2-0.8 times a distance between the higher one of the gas source orifice arrays and the work-piece deposition surface, while orifices in the lower one of the gas source orifice arrays may be spaced an average of 0.1-0.4 times a distance between the higher one of the gas source orifice arrays and the work-piece deposition surface.
    Type: Application
    Filed: September 3, 2009
    Publication date: December 31, 2009
    Inventors: Jeremie J. Dalton, M. Ziaul Karim, Ana R. Londergan
  • Publication number: 20080231931
    Abstract: Devices, methods, and systems comprising a MEMS device, for example, an interferometric modulator, that comprises a cavity in which a layer coats multiple surfaces. The layer is conformal or non-conformal. In some embodiments, the layer is formed by atomic layer deposition (ALD). Preferably, the layer comprises a dielectric material. In some embodiments, the MEMS device also exhibits improved characteristics, such as improved electrical insulation between moving electrodes, reduced stiction, and/or improved mechanical properties.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 25, 2008
    Applicant: QUALCOMM Incorporated
    Inventors: Ana R. Londergan, Bangalore R. Natarajan, Evgeni Gousev, James Randolph Webster, David Heald
  • Publication number: 20080131601
    Abstract: A process in which a wafer is exposed to a first chemically reactive precursor dose insufficient to result in a maximum saturated ALD deposition rate on the wafer, and then to a second chemically reactive precursor dose, the precursors being distributed in a manner so as to provide substantially uniform film deposition. The second chemically reactive precursor dose may likewise be insufficient to result in a maximum saturated ALD deposition rate on the wafer or, alternatively, sufficient to result in a starved saturating deposition on the wafer. The process may or may not include purges between the precursor exposures, or between one set of exposures and not another.
    Type: Application
    Filed: March 1, 2004
    Publication date: June 5, 2008
    Inventors: Gi Youl Kim, Anuranjan Srivastava, Thomas E. Seidel, Ana R. Londergan, Sasangan Ramanathan
  • Patent number: 7183649
    Abstract: A composite film comprised of three layers is formed by ALD on a substrate with a substrate interface surface. A first layer is coupled to the substrate interface surface. The first layer provides adhesion to the substrate interface surface and initiation of layer by layer ALD growth. A second layer is positioned between the first and third layers and provides a conducting diffusion barrier between the substrate and subsequent overlaying film. A third layer has a surface that is configured to provide adhesion and a texture template in preparation for a subsequent overlaying film. The composite engineered barrier structures are applied to interconnect, capacitor and transistor applications.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: February 27, 2007
    Assignee: Genus, Inc.
    Inventors: Ana R. Londergan, Thomas E. Seidel
  • Patent number: 7164203
    Abstract: A composite film comprised of three layers is formed by ALD on a substrate with a substrate interface surface. A first layer is coupled to the substrate interface surface. The first layer provides adhesion to the substrate interface surface and initiation of layer by layer ALD growth. A second layer is positioned between the first and third layers and provides a conducting diffusion barrier between the substrate and subsequent overlaying film. A third layer has a surface that is configured to provide adhesion and a texture template in preparation for a subsequent overlaying film. The composite engineered barrier structures are applied to interconnect, capacitor and transistor applications.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: January 16, 2007
    Assignee: Genus, Inc.
    Inventors: Ana R. Londergan, Thomas E. Seidel
  • Patent number: 7129580
    Abstract: A composite film comprised of three layers is formed by ALD on a substrate with a substrate interface surface. A first layer is coupled to the substrate interface surface. The first layer provides adhesion to the substrate interface surface and initiation of layer by layer ALD growth. A second layer is positioned between the first and third layers and provides a conducting diffusion barrier between the substrate and subsequent overlaying film. A third layer has a surface that is configured to provide adhesion and a texture template in preparation for a subsequent overlaying film. The composite engineered barrier structures are applied to interconnect, capacitor and transistor applications.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 31, 2006
    Assignee: Genus, Inc.
    Inventors: Ana R. Londergan, Thomas E. Seidel
  • Patent number: 6905547
    Abstract: An apparatus with a processing chamber subjects a substrate to atomic layer deposition and deposits a film layer. The processing chamber includes at least a first gas switching port. A gas switching manifold is coupled to the processing chamber and configured to mix reactants with a neutral carrier gas and provide gas switching functionality for ALD processes. An upstream gas source and pressure setting apparatus is coupled to the gas switching manifold. The upstream gas source and pressure setting apparatus includes at least a first reactant source, a second reactant source and a neutral gas source. Additionally, the upstream gas source and pressure setting apparatus is configured to provide a cascade of continuing, decreasing pressures.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: June 14, 2005
    Assignee: Genus, Inc.
    Inventors: Ana R. Londergan, Thomas E. Seidel, Lawrence D. Matthysse, Ed C. Lee