Patents by Inventor Anand A. Kulkarni

Anand A. Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160023303
    Abstract: A method for texturing a surface to form anchoring structures for a coating. The method includes: traversing an energy beam (10) along a path (30) on a solid substrate surface (12) to cause a melt pool (16) to move along the path; controlling power and motion parameters of the energy beam effective to establish a wave front (18) in the melt pool; and terminating the energy beam at an end (34) of the path when the wave front contains sufficient energy to create a protrusion (22) of material above the surface at the end of the path as the melt pool solidifies.
    Type: Application
    Filed: July 22, 2014
    Publication date: January 28, 2016
    Inventors: Gerald J. Bruck, Ahmed Kamel, Anand A. Kulkarni
  • Publication number: 20150345313
    Abstract: A thermal barrier tile (34) with a braze layer (46) co-sintered to a ceramic layer (48), optionally with a layer of MCrAlY bond material (74) disposed there between. The tile can be brazed to a substrate (26) of a component for fabrication or repair of a thermal barrier coating (28). The tile may be fabricated by disposing a first layer of a metal brazing material in a die case (40); disposing a second layer of a ceramic powder on the metal brazing material; and co-sintering the two layers with spark plasma sintering to form the co-sintered ceramic/metal tile. The tile may include an interlocking structural pattern (56) at the ceramic/braze interface, and further may include mirror image contoured edges (70) for interlocking of tiles that are disposed side-by-side. Heights of adjacent tiles (34F, 34G) may be different to improve abradability of the surface.
    Type: Application
    Filed: August 5, 2015
    Publication date: December 3, 2015
    Inventors: Anand A. Kulkarni, Ahmed Kamel, Stefan Lampenscherf, Jonathan E. Shipper, JR., Cora Hitchman, Gary B. Merrill
  • Publication number: 20150275682
    Abstract: A technique for improving the thermal protection against oxidation for a component in a gas turbine engine, for example, blades, row 1 vanes and row 2 vanes. The technique includes spraying a thin layer of alloy 230 on a base substrate of the component at those locations on the component where thermal protection against oxidation is desired. A metal bond coat layer is then deposited on the alloy 230 layer and a thermal barrier coating is deposited on the bond coat layer. The chromium, molybdenum, iron and tungsten in alloy 230 provide superior oxidation resistance, and the addition of lanthanum in the alloy 230 helps tailor thermal expansion with the thermal barrier coating resulting in higher spallation life.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: David B. Allen, Anand A. Kulkarni, Mrinal Munshi
  • Publication number: 20150259770
    Abstract: A metallic coating or alloy is provided. The metallic coating or alloly includes iron, chromium, aluminum, tantalum, and nickel and contains no rhenium. The presence of tantalum and iron and the absence of rhenium are effective to increase a ?/?? transition temperature of the alloy. A component including the metallic coating or alloy is also provided.
    Type: Application
    Filed: May 29, 2015
    Publication date: September 17, 2015
    Inventors: ANAND A. KULKARNI, JONATHAN E. SHIPPER, JR., WERNER STAMM
  • Patent number: 9133345
    Abstract: A metallic coating is provided. The nickel based metallic coating includes tantalum, cobalt, chromium, and aluminum. The nickel based metallic coating does not include silicon and/or hafnium and/or zirconium. A tantalum addition in nickel based coating stabilized the phases gamma/gamma1 at high temperatures leading to a reduction of local stresses.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 15, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Jr., Werner Stamm
  • Patent number: 9129742
    Abstract: An inductance-stable ultra high temperature circuit coupling transformer (50) used to transmit and receive alternating current power and/or data signals (29?, 33?). Primary (30?) and secondary (34?) windings are formed on nanostructured laminated (31?) primary and secondary steel cores (32?) having a Curie temperature exceeding an ultra high operating temperature. The operating range can extend from ambient to 250° C. or to in excess of 550° C. or up to 700° C. with a change in inductance of less than 10% in various embodiments.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: September 8, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Cora Schillig, Rod Waits, Anand A. Kulkarni
  • Publication number: 20150247418
    Abstract: A gas turbine is provided having a heat flow sensor which is arranged on a surface of a component of the gas turbine and which is designed as a thermal element, wherein the heat flow sensor is a transverse thermoelectric element.
    Type: Application
    Filed: September 26, 2013
    Publication date: September 3, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Anand A. Kulkarni, Stefan Lampenscherf
  • Publication number: 20150244344
    Abstract: A self-powered sensing and transmitting circuit (50) including a power element (44) and a sensing element (46) that is powered by the power element for generating a sensor signal responsive to a local operating environment The circuit also includes a transmitting element (48) powered by the power element for transmitting an output signal responsive to the sensor signal to a receiving location (33, 55) remote from the circuit The power element, sensing element and transmitting element of the circuit are arranged in a generally planar and non-integrated circuit configuration formed on a substrate (57) component exposed to operating temperatures at or exceeding 650° C.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni
  • Patent number: 9102015
    Abstract: A thermal barrier tile (34) with a braze layer (46) co-sintered to a ceramic layer (48) is brazed to a substrate (26) of a component for fabrication or repair of a thermal barrier coating (28) for example on a gas turbine ring segment (22, 24). The tile may be fabricated by disposing a first layer of a metal brazing material in a die case (40); disposing a second layer of a ceramic powder on the metal brazing material; and co-sintering the two layers with spark plasma sintering to form the co-sintered ceramic/metal tile. A material property of an existing thermal barrier coating to be repaired may be determined (90), and the co-sintering may be controlled (93) responsive to the property to produce tiles compatible with the existing thermal barrier coating in a material property such as thermal conductivity.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 11, 2015
    Assignee: Siemens Energy, Inc
    Inventors: Anand A. Kulkarni, Ahmed Kamel, Stefan Lampenscherf, Jonathan E. Shipper, Jr., Cora Schillig, Gary B. Merrill
  • Publication number: 20150212021
    Abstract: Apparatus and method for monitoring and quantifying progression of a structural anomaly, such as crack, over a surface of a component (12) in a high temperature environment of a combustion turbine engine The apparatus may include an electrically-insulating layer (14) formed at least over a portion of the surface of the component of the combustion turbine engine.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 30, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: Thomas F. Quinn, Anand A. Kulkarni, James F. Landy
  • Patent number: 9074268
    Abstract: A metallic coating or alloy is provided. The metallic coating includes iron, cobalt, chromium, and aluminum. Tantalum may also be included. A new addition in nickel based coating with stabilized gamma/gamma? phases at high temperatures lead to a reduction of local stresses. A component including the metallic coating or alloy is also provided.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 7, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Jr., Werner Stamm
  • Publication number: 20150183691
    Abstract: A manufacturing method for manufacturing a slice for making or repairing a heat protective coating of a hot gas path component of a gas turbine is provided. The manufacturing method includes debinding a prepreg made of at least two sheets containing powder bound by a binder and Spark Plasma Sintering the at least two debound sheets.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 2, 2015
    Inventors: Steffen Walter, Marco Cologna, Stefan Lampenscherf, Anand A. Kulkarni, Cora Schillig, Gia Khanh Pham
  • Patent number: 9071888
    Abstract: A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) that includes a sensor (306) in connection with a turbine blade (301) or vane (22). A telemetry transmitter circuit (312) may be affixed to the turbine blade with an electrical connecting material (307) for routing electronic data signals from the sensor (306) to the telemetry transmitter circuit, the electronic data signals indicative of a condition of the turbine blade. A resonant energy transfer system for powering the telemetry transmitter circuit may include a rotating data antenna (314) affixed to the turbine blade or on a same substrate as that of the circuit. A stationary data antenna (320) may be affixed to a stationary component such as a stator (323) proximate and in spaced relation to the rotating data antenna for receiving electronic data signals from the rotating data antenna.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 30, 2015
    Assignees: Siemens Aktiengesellschaft, ARKANSAS POWER ELECTRONICS INTERNATIONAL, INC
    Inventors: Ramesh Subramanian, Anand A. Kulkarni, David J. Mitchell, Bjoern Karlsson, Rod Waits, John R. Fraley
  • Patent number: 8961007
    Abstract: A method of forming a thermocouple (12), including: depositing a first material on a component (10) to form a first leg (14); depositing a second material through a mask (30) to form a pattern (50) on the component (10), the pattern (50) forming a plurality of discrete second leg junction ends (20) and a continuous patch (52) of the second material comprising indiscrete lead ends of the second legs (16), each second leg junction end (20) spanning from a respective junction (18) with the first leg (14) to the continuous patch (52); and laser-ablating the continuous patch (52) to form discrete lead ends (22) of the second legs (16), each lead end (22) electrically connected to a respective junction end (20), thereby forming discrete second legs (16).
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: February 24, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ramesh Subramanian, Anand A. Kulkarni, Kevin C. Sheehan
  • Patent number: 8951644
    Abstract: A thermally protective coating (21), such as may be used over a nickel-based superalloy substrate (24). The protective coating (21) includes a CoNiCrAlY or a NiCoCrAlY material and addition of given amounts of one or more secondary elements. The secondary element(s) facilitate and/or join in one or more precipitation mechanisms (??, B2) that retain an aluminum reservoir in the protective coating (21), reducing aluminum diffusion into the substrate (24). This aluminum reservoir maintains a protective alumina scale (38) on the coating (21), thus improving coating life and allowing higher operating temperatures.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: February 10, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Andrew J. Burns, Anand A. Kulkarni
  • Publication number: 20150030826
    Abstract: A method for forming a textured bond coat surface (48) for a thermal barrier coating system (44) of a gas turbine component (34). The method includes selectively melting portions of a layer of alloy particles (16) with a patterned energy beam (20) to form successive layers of alloy material (16?, 16?) until a desired surface geometric feature (26) is achieved. The energy beam pattern may be indexed between layers to form a protruding undercut (28) in the geometric feature. The patterned energy beam may be formed by directing laser energy from a diode laser (30) through a cartridge filter (32). Particles of a flux material (18) may be melted along with the alloy particles to form a protective layer of slag (22) over the melted and cooling alloy material.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Inventors: Ahmed Kamel, Gary B. Merrill, Anand A. Kulkarni, Gerald J. Bruck, Dhafer Jouini, Jonathan E. Shipper, JR., Sachin R. Shinde
  • Patent number: 8914976
    Abstract: Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 23, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Christian X. Campbell, Anand A. Kulkarni, Allister W. James, Brian J. Wessell, Paul J. Gear
  • Publication number: 20140263579
    Abstract: A thermal barrier tile (34) with a braze layer (46) co-sintered to a ceramic layer (48) is brazed to a substrate (26) of a component for fabrication or repair of a thermal barrier coating (28) for example on a gas turbine ring segment (22, 24). The tile may be fabricated by disposing a first layer of a metal brazing material in a die case (40); disposing a second layer of a ceramic powder on the metal brazing material; and co-sintering the two layers with spark plasma sintering to form the co-sintered ceramic/metal tile. A material property of an existing thermal barrier coating to be repaired may be determined (90), and the co-sintering may be controlled (93) responsive to the property to produce tiles compatible with the existing thermal barrier coating in a material property such as thermal conductivity.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Anand A. Kulkarni, Ahmed Kamel, Stefan Lampenscherf, Jonathan E. Shipper, Jr., Cora Schillig, Gary B. Merrill
  • Patent number: 8815371
    Abstract: A coated substrate with a subsurface cooling channel having no corner disposed proximate a seam between the substrate and the coating. A method for forming such a structure, including forming a groove in a surface of a substrate, forming a preform having a cooperating portion and a protruding portion, inserting the cooperating portion of the preform into the groove, leaving the protruding portion of the preform protruding beyond the surface of the substrate, applying a layer of a coating material to the surface of the substrate and the protruding portion of the perform, and removing the preform, thereby creating a cooling channel.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: August 26, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Douglas J. Arrell, Allister W. James, Anand A. Kulkarni
  • Patent number: 8797179
    Abstract: A telemetry system for use in a combustion turbine engine (10) that includes a first sensor (306) in connection with a turbine blade (301) or vane (22). A first telemetry transmitter circuit (312) is affixed to the turbine blade and routes electronic data signals, indicative of a condition of the blade, from the sensor to a rotating data antenna (314) that is affixed to the turbine blade or is on a same substrate as that of the circuit. A stationary data antenna (333) may be affixed to a stationary component (323) proximate and in spaced relation to the rotating data antenna for receiving electronic data signals from the rotating data antenna. A second sensor (335) transmits electronic data signals indicative of the stationary component to a second telemetry circuit (332), which routes the signals to the stationary antenna. The stationary antenna transmits the electronic data signals to a receiver (338).
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ramesh Subramanian, Anand A. Kulkarni, David J. Mitchell, Bjoern Karlsson, Rod Waits, John R. Fraley