Patents by Inventor Anand A. Kulkarni

Anand A. Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130061775
    Abstract: A bond coating having high corrosion and oxidation resistance and good compatibility with a thermal barrier coating is disclosed. The bond coating may be an optimized NiCrAlY material with additional materials that eliminates the presence of beta phase for oxidation by replacing the beta phase with a gamma/gamma prime system. The bond coating may also decrease the presence of phases that are detrimental to the mechanical and oxidation properties of the system, such as the sigma and BCC chromium phases. The bond coating may also have a gamma/gamma prime transition temperature that is about 400 degrees Celsius higher than conventional bond coatings, which enables local stresses to be reduced.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Inventors: ANAND A. KULKARNI, Jonathan E. Shipper, Werner Stamm
  • Patent number: 8357454
    Abstract: A ceramic thermal barrier coating (TBC) (18) having first and second layers (20, 22), the second layer (22) having a lower thermal conductivity than the first layer for a given density. The second layer may be formed of a material with anisotropic crystal lattice structure. Voids (24) in at least the first layer (20) make the first layer less dense than the second layer. Grooves (28) are formed in the TBC (18) for thermal strain relief. The grooves may align with fluid streamlines over the TBC. Multiple layers (84, 86, 88) may have respective sets of grooves (90), Preferred failure planes parallel to the coating surface (30) may be formed at different depths (A1, A2, A3) in the thickness of the TBC to stimulate generation of a fresh surface when a portion of the coating fails by spalling. A dense top layer (92) may provide environmental and erosion resistance.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 22, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Anand A. Kulkarni, David J. Mitchell, Ramesh Subramanian, Andrew J. Burns
  • Publication number: 20130008179
    Abstract: An inductance-stable ultra high temperature circuit coupling transformer (50) used to transmit and receive alternating current power and/or data signals (29?, 33?). Primary (30?) and secondary (34?) windings are formed on nanostructured laminated (31?) primary and secondary steel cores (32?) having a Curie temperature exceeding an ultra high operating temperature. The operating range can extend from ambient to 250° C. or to in excess of 550° C. or up to 700° C. with a change in inductance of less than 10% in various embodiments.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Inventors: David J. Mitchell, Cora Schillig, Rod Waits, Anand A. Kulkarni
  • Publication number: 20120283963
    Abstract: A method for predicting the remaining useful life of an engine (10) having components (18, 19, 22, 23) that are instrumented with sensors (50) that generate electronic data signals indicative of an operating condition of the component comprises identifying (52) one or more components and at least one failure mode for each component that limit an operating life of the components and engine (10). The method further comprises acquiring (62) and storing data relative to current operating conditions of the components associated with the identified failure mode; and, then determining (68) a remaining useful life of the component based on the data relative to current operating condition of the components, the data relative to historical data of the operating condition associated with the failure mode and a predicted failure mode rate.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Inventors: David J. Mitchell, Anand A. Kulkarni
  • Publication number: 20120270063
    Abstract: A metallic article adapted to be exposed to a gas during operation conditions is provided. The metallic article includes a metallic substrate, and a thermal barrier coating on the metallic substrate for restricting heat transfer from the gas to the metallic substrate. The thermal barrier coating includes a coating of a ceramic material formed by a deposition of powdered particles of said ceramic material defining a porous microstructure, wherein the porous microstructure has an average pore size ‘d’, such that d ? 0.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 25, 2012
    Inventors: Alessandro Casu, Anand A. Kulkarni, Stefan Lampenscherf
  • Publication number: 20120256761
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Inventors: DAVID J. MITCHELL, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice Mcpherson, Bryon Westen
  • Publication number: 20120236899
    Abstract: A method of forming a thermocouple (12), including: depositing a first material on a component (10) to form a first leg (14); depositing a second material through a mask (30) to form a pattern (50) on the component (10), the pattern (50) forming a plurality of discrete second leg junction ends (20) and a continuous patch (52) of the second material comprising indiscrete lead ends of the second legs (16), each second leg junction end (20) spanning from a respective junction (18) with the first leg (14) to the continuous patch (52); and laser-ablating the continuous patch (52) to form discrete lead ends (22) of the second legs (16), each lead end (22) electrically connected to a respective junction end (20), thereby forming discrete second legs (16).
    Type: Application
    Filed: March 12, 2012
    Publication date: September 20, 2012
    Inventors: Ramesh Subramanian, Anand A. Kulkarni, Kevin C. Sheehan
  • Patent number: 8242045
    Abstract: A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al2O3-0-3 wt % La2O3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO2), zirconia silicate (2-30 wt % ZrSiO4), neodymium oxide (0-4 wt %), titania (Al2O3-3-40% TiO2) or alumina-based magnesium aluminate spinel (Al2O3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: August 14, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Anand A. Kulkarni, Ramesh Subramanian, Stephen M. Sabol
  • Publication number: 20120194396
    Abstract: A bracket assembly is used to mount a wireless telemetry component proximate a rotating component of a combustion turbine engine (10), wherein the wireless telemetry component includes an RF transparent ceramic cover (128). The bracket assembly comprises a first mounting bracket (125) on a surface proximate the rotating component that includes a first (138) and second (139) bracket member spaced apart from one another. The first (138) and second (139) bracket members are disposed generally perpendicular to a direction of centrifugal forces generated by the rotating component. At least one of the first (138) or second bracket (139) members is inclined toward the other bracket member and disposed at an acute angle relative to the surface (141) proximate the rotating component.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Inventors: David J. Mitchell, Anand A. Kulkarni
  • Publication number: 20120197597
    Abstract: A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) and includes a sensor (118) in connection with a turbine blade (111) or vane (23). A transmitter assembly (117) includes a telemetry transmitter circuit/transceiver may be affixed on a turbine blade (111) or seal plate (115) proximate the turbine blade with a first connecting material (119) deposited on the turbine blade (111) for routing electronic data signals, indicative of a condition of the turbine blade (111), from the sensor (118) to the telemetry transmitter circuit/transceiver. An induction power system for powering the telemetry transmitter circuit/transceiver may include a rotating data antenna (116) affixed to the seal plate (115) with an electrical connection (122) between the telemetry transmitting circuit/transceiver for routing electronic data signals from the telemetry transmitter circuit/transceiver to the rotating data antenna (119).
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Inventors: David J. Mitchell, Ramesh Subramanian, Cora Schillig, Anand A. Kulkarni, Vinay Jonnalagadda, Bulent Acar, Sankar Nellian, James P. Williams, Edward R. Roesch
  • Patent number: 8223036
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8220990
    Abstract: A circuit assembly (34) affixed to a moving part (20) of a turbine for receiving information about a condition of the part and transmitting this information external to the engine. The circuit assembly includes a high-temperature resistant package (34A) that attaches to the part. A high temperature resistant PC board (42) supports both active and passive components of the circuit, wherein a first group of the passive components are fabricated with zero temperature coefficient of resistance and a second group of the passive components are fabricated with a positive temperature coefficient of resistance. The active components are fabricated with high temperature metallization. Connectors (40) attached to the PC board pass through a wall of the package (34A) for communication with sensors (30) on the part and with an antenna (26) for transmitting data about the condition of the part to outside the turbine.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20120128526
    Abstract: A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases ?/?? at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Werner Stamm
  • Publication number: 20120128525
    Abstract: A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases ?/?? at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Werner Stamm
  • Publication number: 20120096713
    Abstract: A composition and method for cleaning turbine engine components (10) during servicing. An embodiment of the invention includes a colloidal mixture or slurry (22) of nanoparticles. The slurry may be nontoxic and provide optimal cleaning of tiny surface-exposed crevices (18) of braze joints and components. When a colloidal mixture is in a polar solvent, the pH of the slurry is maintained at about 5 to 9 and at the isoelectric point of the nanoparticles to minimize or prevent agglomeration. When a colloidal mixture is in a nonpolar solvent, the pH of the slurry is maintained at about 5 to 9 and at the isoelectric point of the nanoparticles to minimize or prevent agglomeration by use of surfactant additives.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Inventors: Navin J. Manjooran, Zafir A.M. Abdo, Anita Balik, Anand A. Kulkarni, Diego L. Caso, JR.
  • Patent number: 8151623
    Abstract: A wear sensor (30, 50, 60) installed on a surface area (24) of a component (20, 21) subject to wear from an opposing surface (74, 75). The sensor has a proximal portion (32A, 52A, 62A) and a distal portion (32C, 52C, 62C) relative to a wear starting position (26). An electrical circuit (40) measures an electrical characteristic such as resistance of the sensor, which changes with progressive reduction of the sensor from the proximal portion to the distal portion during a widening reduction wear of the surface from the starting position. The measuring circuit quantifies the electrical changes to derive a wear depth based on a known geometry of the wear depth per wear width. In this manner, wear depth may be measured with a surface mounted sensor.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: April 10, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Sachin R. Shinde, Anand A. Kulkarni, David J. Mitchell, Ramesh Subramanian
  • Patent number: 8153204
    Abstract: A method of imparting one or more of a variety of functional characteristic to a portion of an engine (e.g., a turbine or diesel engine) by depositing particles from different particle feedstocks so as to form a high temperature resistant coating on a surface of the engine portion, where the particle feedstocks are varied in-situ while the particle are being deposited and at least one functional characteristic corresponds to, or results from, using different particle feedstocks.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: April 10, 2012
    Assignee: Siemens Energy, Inc.
    Inventor: Anand A. Kulkarni
  • Patent number: 8132467
    Abstract: A structure and method for instrumenting a component for monitoring wear in a coating. The method includes depositing a first thin layer of electrically insulating material, depositing a thin electrically conductive layer over the first electrically insulating layer, depositing a second thin layer of electrically insulating material over the electrically conductive layer. An overlying thickness of the coating material is deposited over the second thin layer of electrically insulating material. The thicknesses of the insulating and conducting layers is controlled to be small enough such that the overlying coating surface exposed to mechanical wear retains a desired degree of smoothness without the necessity for a separate planarization step.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: March 13, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Sachin R. Shinde, Anand A. Kulkarni, David J. Mitchell
  • Publication number: 20120034101
    Abstract: A turbine blade having a squealer tip coupled to a radially outer end of the turbine blade that is usable in a gas turbine engine is disclosed. The squealer tip may require less cooling air and may therefore be more efficient than conventional configurations. The squealer tip may be formed from one or more materials such as oxide dispersion strengthened alloys and FeCrAl alloys. The squealer tip may be formed from a plurality of segmented tips extending radially outward and spaced apart from each other. For example, the squealer tip may be formed from two rails extending radially outward and spaced apart from each other. The two rails may be formed from outer and inner rails that each form a continuous ring. The squealer tip may be attached to the tip with a transient liquid phase bond or an additive manufacturing process, such as, a selective laser melting process.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Inventors: Allister W. James, Anand A. Kulkarni
  • Publication number: 20120005891
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western