Patents by Inventor Anand S. Murthy

Anand S. Murthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128340
    Abstract: Disclosed herein are integrated circuit (IC) contact structures, and related devices and methods. For example, in some embodiments, an IC contact structure may include an electrical element, a metal on the electrical element, and a semiconductor material on the metal. The metal may conductively couple the semiconductor material and the electrical element.
    Type: Application
    Filed: December 26, 2023
    Publication date: April 18, 2024
    Applicant: Intel Corporation
    Inventors: Patrick Morrow, Glenn A. Glass, Anand S. Murthy, Rishabh Mehandru
  • Publication number: 20240113025
    Abstract: Embodiments disclosed herein include an integrated circuit structure. In an embodiment, the integrated circuit structure comprises an interlayer dielectric (ILD), and an opening in the ILD. In an embodiment, a first layer lines the opening, and a second layer lines the first layer. In an embodiment, the second layer comprises a semi-metal or transition metal dichalcogenide (TMD). The integrated circuit structure may further comprise a third layer over the second layer.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Abhishek Anil SHARMA, Pushkar RANADE, Sagar SUTHRAM, Wilfred GOMES, Tahir GHANI, Anand S. MURTHY
  • Publication number: 20240113161
    Abstract: A transistor includes a body of semiconductor material, where the body has laterally opposed body sidewalls and a top surface. A gate structure contacts the top surface of the body. A source region contacts a first one of the laterally opposed body sidewalls and a drain region contacts a second one of the laterally opposed body sidewalls. A first isolation region is under the source region and has a top surface in contact with a bottom surface of the source region. A second isolation region is under the drain region and has a top surface in contact with a bottom surface of the drain region. Depending on the transistor configuration, a major portion of the inner-facing sidewalls of the first and second isolation regions contact respective sidewalls of either a subfin structure (e.g., FinFET transistor configurations) or a lower portion of a gate structure (e.g., gate-all-around transistor configuration).
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Inventors: Willy RACHMADY, Cheng-Ying HUANG, Matthew V. METZ, Nicholas G. MINUTILLO, Sean T. MA, Anand S. MURTHY, Jack T. KAVALIEROS, Tahir GHANI, Gilbert DEWEY
  • Publication number: 20240113116
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and/or techniques for integrated circuit structures that include self-aligned metal gates, self-aligned epitaxial structure, self-aligned terminal contacts over the epitaxial structure, and removal of poly material around a gate during integrated circuit structure manufacture, using a tub gate architecture. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Dan S. LAVRIC, YenTing CHIU, Tahir GHANI, Leonard P. GULER, Mohammad HASAN, Aryan NAVABI-SHIRAZI, Anand S. MURTHY, Wonil CHUNG, Allen B. GARDINER
  • Publication number: 20240105798
    Abstract: An example IC device formed using trim patterning as described herein may include a support structure, a first elongated structure (e.g., a first fin or nanoribbon) and a second elongated structure (e.g., a second fin or nanoribbon), proximate to an end of the first elongated structure. An angle between a projection of the first elongated structure on the support structure and an edge of the support structure may be between about 5 and 45 degrees, while an angle between a projection of the second elongated structure on the support structure and the edge of the support structure may be less than about 15 degrees.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Inventors: Abhishek A. Sharma, Tahir Ghani, Anand S. Murthy, Elliot Tan, Shem Ogadhoh, Sagar Suthram, Pushkar Sharad Ranade, Wilfred Gomes
  • Publication number: 20240107749
    Abstract: Various arrangements for IC devices implementing memory with one access transistor for multiple capacitors are disclosed. An example IC device includes a memory array of M memory units, where each memory unit includes an access transistor and N capacitors coupled to the access transistor. A portion of the capacitors are formed in one or more layers above the access transistor, and a portion of the capacitors are formed in one or more layers below the access transistor. The capacitors in a particular memory unit may be coupled to a single via or to individual vias. In some embodiments, some of the vias are backside vias.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Wilfred Gomes, Anand S. Murthy, Sagar Suthram
  • Publication number: 20240105596
    Abstract: IC devices with angled interconnects are disclosed herein. An interconnect, specifically a trench or line interconnect, is referred to as an “angled interconnect” if the interconnect is neither perpendicular nor parallel to any edges of front or back faces of the support structure, or if the interconnect is not parallel or perpendicular to interconnect in another region of an interconnect layer. Angled interconnects may be used to decrease the area of pitch transition regions. Angled interconnects may also be used to decrease the area of pitch offset regions.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Wilfred Gomes, Anand S. Murthy, Shem Ogadhoh, Pushkar Sharad Ranade, Sagar Suthram, Elliot Tan
  • Patent number: 11942526
    Abstract: Disclosed herein are integrated circuit (IC) contact structures, and related devices and methods. For example, in some embodiments, an IC contact structure may include an electrical element, a metal on the electrical element, and a semiconductor material on the metal. The metal may conductively couple the semiconductor material and the electrical element.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Glenn A. Glass, Anand S. Murthy, Rishabh Mehandru
  • Publication number: 20240098965
    Abstract: Hybrid manufacturing of access transistors for memory, presented herein, explores how IC components fabricated by different manufacturers may be combined in an IC device to achieve advantages in terms of, e.g., performance, density, number of active memory layers, fabrication approaches, and so on. In one aspect, an IC device may include a support, a first circuit over a first portion of the support, a second circuit over a second portion of the support, a scribe line between the first circuit and the second circuit, and one or more electrical traces extending over the scribe line. In another aspect, an IC device may include a support, a memory array, comprising a first circuit over a first portion of the support and one or more layers of capacitors over the first circuit, and a second circuit over a second portion of the support.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Wilfred Gomes, Anand S. Murthy, Pushkar Sharad Ranade, Sagar Suthram
  • Publication number: 20240088029
    Abstract: Described herein are full wafer devices that include interconnect layers on a back side of the device. The backside interconnect layers couple together different dies of the full wafer device. The backside interconnect layers include an active layer that includes active devices, such as transistors. The active devices may act as switches, e.g., to control routing of signals between different dies of the full wafer device.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Wilfred Gomes, Anand S. Murthy, Sagar Suthram
  • Publication number: 20240088035
    Abstract: Described herein are full wafer devices that include passive devices formed in a power delivery structure. Power is delivered to the full wafer device on a backside of the full wafer device. A passive device in a backside layer is formed using an additive process that results in a seam running through the passive device. The seam may be, for example, an air gap, a change in material structure, or a region with a different chemical makeup from the surrounding passive device.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Wilfred Gomes, Anand S. Murthy
  • Publication number: 20240088017
    Abstract: Described herein are full wafer devices that include passive devices formed in one or more interconnect layers. Interconnect layers are formed over a front side of the full wafer device. A passive device is formed using an additive process that results in a seam running through the passive device. The seam may be, for example, an air gap, a change in material structure, or a region with a different chemical makeup from the surrounding passive device. In some embodiments, the passive devices are formed in global interconnect layers coupling multiple does of the full wafer device.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Tahir Ghani, Wilfred Gomes, Anand S. Murthy, Pushkar Sharad Ranade, Sagar Suthram
  • Patent number: 11923410
    Abstract: A transistor includes a body of semiconductor material, where the body has laterally opposed body sidewalls and a top surface. A gate structure contacts the top surface of the body. A source region contacts a first one of the laterally opposed body sidewalls and a drain region contacts a second one of the laterally opposed body sidewalls. A first isolation region is under the source region and has a top surface in contact with a bottom surface of the source region. A second isolation region is under the drain region and has a top surface in contact with a bottom surface of the drain region. Depending on the transistor configuration, a major portion of the inner-facing sidewalls of the first and second isolation regions contact respective sidewalls of either a subfin structure (e.g., FinFET transistor configurations) or a lower portion of a gate structure (e.g., gate-all-around transistor configuration).
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Cheng-Ying Huang, Matthew V. Metz, Nicholas G. Minutillo, Sean T. Ma, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani, Gilbert Dewey
  • Publication number: 20240063274
    Abstract: In an example, an integrated circuit structure includes a first vertical stack of horizontal nanowires laterally spaced apart from a second vertical stack of horizontal nanowires. An epitaxial source or drain structure is between the first and second vertical stacks of horizontal nanowires. The epitaxial source or drain structure includes a nucleation layer having a first portion in contact with the first vertical stack of horizontal nanowires and a second portion in contact with the second vertical stack of horizontal nanowires. The nucleation layer includes silicon with arsenic dopants. The epitaxial source or drain structure also includes an epitaxial fill layer laterally between the first and second portions of the nucleation layer. The epitaxial fill layer includes silicon with phosphorous dopants. The epitaxial fill layer has a total atomic concentration of arsenic less than half of a total atomic concentration of arsenic of the nucleation layer.
    Type: Application
    Filed: August 17, 2022
    Publication date: February 22, 2024
    Inventors: Patrick WALLACE, Robert EHLERT, Subrina RAFIQUE, Peter WELLS, Anand S. MURTHY, Shishir PANDYA, Xiaochen REN, Yulia TOLSTOVA
  • Patent number: 11908934
    Abstract: Embodiments of the present invention describe a epitaxial region on a semiconductor device. In one embodiment, the epitaxial region is deposited onto a substrate via cyclical deposition-etch process. Cavities created underneath the spacer during the cyclical deposition-etch process are backfilled by an epitaxial cap layer. The epitaxial region and epitaxial cap layer improves electron mobility at the channel region, reduces short channel effects and decreases parasitic resistance.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Anand S. Murthy, Daniel Bourne Aubertine, Tahir Ghani, Abhijit Jayant Pethe
  • Publication number: 20240014268
    Abstract: Integrated circuit structures having source or drain structures with abrupt dopant profiles are described. In an example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. The first and second epitaxial source or drain structures include silicon, phosphorous and arsenic, with an atomic concentration of phosphorous substantially the same as an atomic concentration of arsenic.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: Ryan KEECH, Anand S. MURTHY, Nicholas G. MINUTILLO, Suresh VISHWANATH, Mohammad HASAN, Biswajeet GUHA, Subrina RAFIQUE
  • Patent number: 11869939
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: January 9, 2024
    Assignee: Sony Group Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Publication number: 20240008253
    Abstract: Structures having memory access transistors with backside contacts are described. In an example, an integrated circuit structure includes a front-side structure including a device layer having a fin-based transistor, and a capacitor structure above the fin-based transistor of the device layer. A backside structure is below the front-side structure. The backside structure includes a conductive contact electrically connected to the fin-based transistor of the device layer.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Abhishek Anil SHARMA, Tahir GHANI, Anand S. MURTHY, Wilfred GOMES, Cory WEBER, Rishabh MEHANDRU, Sagar SUTHRAM, Pushkar RANADE
  • Publication number: 20240006416
    Abstract: Structures having ultra-high conductivity global routing are described. In an example, an integrated circuit structure includes a device layer having a plurality of transistors. A plurality of metallization layers is above the plurality of transistors of the device layer. One or more of the metal layers includes a material having a critical temperature greater than 10 Kelvin and less than 300 Kelvin.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Abhishek Anil SHARMA, Tahir GHANI, Anand S. MURTHY, Sagar SUTHRAM, Pushkar RANADE, Wilfred GOMES, Rishabh MEHANDRU, Cory WEBER
  • Publication number: 20240006531
    Abstract: Structures having vertical transistors are described. In an example, an integrated circuit structure includes a channel structure on a drain contact layer, the channel structure having an opening extending there through. A gate dielectric layer is on a bottom and along sides of the opening, the gate dielectric layer laterally surrounded by the channel structure. A gate electrode is on and laterally surrounded by the gate dielectric layer. A source contact layer is on sides of a portion of the gate dielectric layer extending above the channel structure.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Abhishek Anil SHARMA, Rishabh MEHANDRU, Sagar SUTHRAM, Cory WEBER, Tahir GHANI, Anand S. MURTHY, Pushkar RANADE, Wilfred GOMES