Patents by Inventor Anandaroop Chakrabarti

Anandaroop Chakrabarti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11632092
    Abstract: An on-chip transformer circuit is disclosed. The on-chip transformer circuit comprises a primary winding circuit comprising at least one turn of a primary conductive winding arranged as a first N-sided polygon in a first dielectric layer of a substrate; and a secondary winding circuit comprising at least one turn of a secondary conductive winding arranged as a second N-sided polygon in a second, different, dielectric layer of the substrate. In some embodiments, the primary winding circuit and the secondary winding circuit are arranged to overlap one another at predetermined locations along the primary conductive winding and the secondary conductive winding, wherein the predetermined locations comprise a number of locations less than all locations along the primary conductive winding and the secondary conductive winding.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: April 18, 2023
    Assignee: Intel Corporation
    Inventors: Kaushik Dasgupta, Chuanzhao Yu, Chintan Thakkar, Saeid Daneshgar, Hyun Yoon, Xi Li, Anandaroop Chakrabarti, Stefan Shopov
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220038069
    Abstract: An on-chip transformer circuit is disclosed. The on-chip transformer circuit comprises a primary winding circuit comprising at least one turn of a primary conductive winding arranged as a first N-sided polygon in a first dielectric layer of a substrate; and a secondary winding circuit comprising at least one turn of a secondary conductive winding arranged as a second N-sided polygon in a second, different, dielectric layer of the substrate. In some embodiments, the primary winding circuit and the secondary winding circuit are arranged to overlap one another at predetermined locations along the primary conductive winding and the secondary conductive winding, wherein the predetermined locations comprise a number of locations less than all locations along the primary conductive winding and the secondary conductive winding.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 3, 2022
    Inventors: Kaushik Dasgupta, Chuanzhao Yu, Chintan Thakkar, Saeid Daneshgar, Hyun Yoon, Xi Li, Anandaroop Chakrabarti, Stefan Shopov
  • Publication number: 20210313943
    Abstract: An on-chip transformer circuit is disclosed. The on-chip transformer circuit comprises a primary winding circuit comprising at least one turn of a primary conductive winding arranged as a first N-sided polygon in a first dielectric layer of a substrate; and a secondary winding circuit comprising at least one turn of a secondary conductive winding arranged as a second N-sided polygon in a second, different, dielectric layer of the substrate. In some embodiments, the primary winding circuit and the secondary winding circuit are arranged to overlap one another at predetermined locations along the primary conductive winding and the secondary conductive winding, wherein the predetermined locations comprise a number of locations less than all locations along the primary conductive winding and the secondary conductive winding.
    Type: Application
    Filed: May 10, 2021
    Publication date: October 7, 2021
    Inventors: Kaushik Dasgupta, Chuanzhao Yu, Chintan Thakkar, SAEID DANESHGAR, Hyun Yoon, Xi Li, Anandaroop Chakrabarti, Stefan Shopov
  • Patent number: 11031918
    Abstract: An on-chip transformer circuit is disclosed. The on-chip transformer circuit comprises a primary winding circuit comprising at least one turn of a primary conductive winding arranged as a first N-sided polygon in a first dielectric layer of a substrate; and a secondary winding circuit comprising at least one turn of a secondary conductive winding arranged as a second N-sided polygon in a second, different, dielectric layer of the substrate. In some embodiments, the primary winding circuit and the secondary winding circuit are arranged to overlap one another at predetermined locations along the primary conductive winding and the secondary conductive winding, wherein the predetermined locations comprise a number of locations less than all locations along the primary conductive winding and the secondary conductive winding.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Kaushik Dasgupta, Chuanzhao Yu, Chintan Thakkar, Saeid Daneshgar, Hyun Yoon, Xi Li, Anandaroop Chakrabarti, Stefan Shopov
  • Publication number: 20200144976
    Abstract: An on-chip transformer circuit is disclosed. The on-chip transformer circuit comprises a primary winding circuit comprising at least one turn of a primary conductive winding arranged as a first N-sided polygon in a first dielectric layer of a substrate; and a secondary winding circuit comprising at least one turn of a secondary conductive winding arranged as a second N-sided polygon in a second, different, dielectric layer of the substrate. In some embodiments, the primary winding circuit and the secondary winding circuit are arranged to overlap one another at predetermined locations along the primary conductive winding and the secondary conductive winding, wherein the predetermined locations comprise a number of locations less than all locations along the primary conductive winding and the secondary conductive winding.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 7, 2020
    Inventors: Kaushik Dasgupta, Chuanzhao Yu, Chintan Thakkar, Saeid Daneshgar, Hyun Yoon, Xi Li, Anandaroop Chakrabarti, Stefan Shopov
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10530384
    Abstract: Circuits comprising: digital-to-amplitude converter (DAC), comprising: binary weighted switching transistors (BWSTs), each having gate coupled to amplitude control bit ACB, and wherein the drain of each of the BWSTs are connected together and wherein the source of each of the BWSTs are connected together; transistor M1 having gate coupled to input signal and first bias voltage BV1 and source coupled to the drains of the BWSTs; transistor M2 having gate coupled to BV2 and source coupled to the drain of M1; transistor M3 having gate coupled to BV3 and source coupled to the drain of M2; transistor having gate coupled to BV4, source coupled to the drain of M3; and inverter having input coupled to another ACB and having output coupled to the output of the DAC and the drain of M4.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: January 7, 2020
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Anandaroop Chakrabarti, Harish Krishnaswamy
  • Publication number: 20190319592
    Abstract: In some embodiments, circuits for providing Class-E power amplifiers are provided, the circuits comprising: a first switch having a first side and a second side; a first Class-E load network coupled to the first side of the first switch; a second Class-E load network; and a second switch having a first side and a second side, the first side of the second switch being coupled the second side of the first switch and the second Class-E load network. In some embodiments, the circuits further comprise: a third switch having a first side and a second side; a third Class-E load network coupled to the first side of the third switch; a fourth Class-E load network; and a fourth switch having a first side and a second side, the first side of the fourth switch being coupled the second side of the third switch and the fourth Class-E load network.
    Type: Application
    Filed: December 19, 2018
    Publication date: October 17, 2019
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Anandaroop Chakrabarti, Harish Krishnaswamy
  • Patent number: 10171050
    Abstract: In some embodiments, circuits for providing Class-E power amplifiers are provided, the circuits comprising: a first switch having a first side and a second side; a first Class-E load network coupled to the first side of the first switch; a second Class-E load network; and a second switch having a first side and a second side, the first side of the second switch being coupled the second side of the first switch and the second Class-E load network. In some embodiments, the circuits further comprise: a third switch having a first side and a second side; a third Class-E load network coupled to the first side of the third switch; a fourth Class-E load network; and a fourth switch having a first side and a second side, the first side of the fourth switch being coupled the second side of the third switch and the fourth Class-E load network.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: January 1, 2019
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Anandaroop Chakrabarti, Harish Krishnaswamy
  • Patent number: 10171031
    Abstract: An integrated electronic circuit is provided. The integrated electronic circuit includes a transconductance cell formed from transconductance cell devices. The integrated electronic circuit further includes active and passive decoupling circuits. The integrated electronic circuit also includes an oscillator having a tank that is direct current decoupled from the transconductance cell devices using the active and passive decoupling circuits to increase voltage swing and decrease phase noise of the oscillator.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Anandaroop Chakrabarti, Mark Ferriss, Bodhisatwa Sadhu
  • Publication number: 20170317684
    Abstract: Circuits comprising: digital-to-amplitude converter (DAC), comprising: binary weighted switching transistors (BWSTs), each having gate coupled to amplitude control bit ACB, and wherein the drain of each of the BWSTs are connected together and wherein the source of each of the BWSTs are connected together; transistor M1 having gate coupled to input signal and first bias voltage BV1 and source coupled to the drains of the BWSTs; transistor M2 having gate coupled to BV2 and source coupled to the drain of M1; transistor M3 having gate coupled to BV3 and source coupled to the drain of M2; transistor having gate coupled to BV4, source coupled to the drain of M3; and inverter having input coupled to another ACB and having output coupled to the output of the DAC and the drain of M4.
    Type: Application
    Filed: January 9, 2017
    Publication date: November 2, 2017
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Anandaroop Chakrabarti, Harish Krishnaswamy
  • Patent number: 9780725
    Abstract: An integrated electronic circuit is provided. The integrated electronic circuit includes a transconductance cell formed from transconductance cell devices. The integrated electronic circuit further includes active and passive decoupling circuits. The integrated electronic circuit also includes an oscillator having a tank that is direct current decoupled from the transconductance cell devices using the active and passive decoupling circuits to increase voltage swing and decrease phase noise of the oscillator.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Anandaroop Chakrabarti, Mark Ferriss, Bodhisatwa Sadhu
  • Publication number: 20170237397
    Abstract: An integrated electronic circuit is provided. The integrated electronic circuit includes a transconductance cell formed from transconductance cell devices. The integrated electronic circuit further includes active and passive decoupling circuits. The integrated electronic circuit also includes an oscillator having a tank that is direct current decoupled from the transconductance cell devices using the active and passive decoupling circuits to increase voltage swing and decrease phase noise of the oscillator.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventors: Anandaroop Chakrabarti, Mark Ferriss, Bodhisatwa Sadhu
  • Publication number: 20170194920
    Abstract: In some embodiments, circuits for providing Class-E power amplifiers are provided, the circuits comprising: a first switch having a first side and a second side; a first Class-E load network coupled to the first side of the first switch; a second Class-E load network; and a second switch having a first side and a second side, the first side of the second switch being coupled the second side of the first switch and the second Class-E load network. In some embodiments, the circuits further comprise: a third switch having a first side and a second side; a third Class-E load network coupled to the first side of the third switch; a fourth Class-E load network; and a fourth switch having a first side and a second side, the first side of the fourth switch being coupled the second side of the third switch and the fourth Class-E load network.
    Type: Application
    Filed: August 29, 2016
    Publication date: July 6, 2017
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Anandaroop Chakrabarti, Harish Krishnaswamy
  • Patent number: 9614541
    Abstract: Circuits comprising: digital-to-amplitude converter (DAC), comprising: binary weighted switching transistors (BWSTs), each having gate coupled to amplitude control bit ACB, and wherein the drain of each of the BWSTs are connected together and wherein the source of each of the BWSTs are connected together; transistor M1 having gate coupled to input signal and first bias voltage BV1 and source coupled to the drains of the BWSTs; transistor M2 having gate coupled to BV2 and source coupled to the drain of M1; transistor M3 having gate coupled to BV3 and source coupled to the drain of M2; transistor having gate coupled to BV4, source coupled to the drain of M3; and inverter having input coupled to another ACB and having output coupled to the output of the DAC and the drain of M4.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: April 4, 2017
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Anandaroop Chakrabarti, Harish Krishnaswamy
  • Publication number: 20170077871
    Abstract: An integrated electronic circuit is provided. The integrated electronic circuit includes a transconductance cell formed from transconductance cell devices. The integrated electronic circuit further includes active and passive decoupling circuits. The integrated electronic circuit also includes an oscillator having a tank that is direct current decoupled from the transconductance cell devices using the active and passive decoupling circuits to increase voltage swing and decrease phase noise of the oscillator.
    Type: Application
    Filed: November 2, 2016
    Publication date: March 16, 2017
    Inventors: Anandaroop Chakrabarti, Mark Ferriss, Bodhisatwa Sadhu