Patents by Inventor Andreas A. Fenner

Andreas A. Fenner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131625
    Abstract: Various embodiments of a hermetic assembly and a method of forming such assembly are disclosed. The hermetic assembly includes a dielectric substrate having a first major surface and a second major surface, a patterned layer connected to the first major surface of the dielectric substrate by a laser bond, and a ferrule having a body and a flange extending from the body. The flange is welded to a welding portion of the patterned layer that is disposed between the flange and the first major surface of the dielectric substrate such that the ferrule is hermetically sealed to the dielectric substrate.
    Type: Application
    Filed: January 5, 2024
    Publication date: April 25, 2024
    Inventors: David A. Ruben, Andreas Fenner, Andrew J. Ries, Robert A. Munoz, Christopher T. Kinsey, Mark E. Henschel
  • Patent number: 11881325
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: January 23, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Patent number: 11865639
    Abstract: Various embodiments of a hermetic assembly and a method of forming such assembly are disclosed. The hermetic assembly includes a dielectric substrate having a first major surface and a second major surface, a patterned layer connected to the first major surface of the dielectric substrate by a laser bond, and a ferrule having a body and a flange extending from the body. The flange is welded to a welding portion of the patterned layer that is disposed between the flange and the first major surface of the dielectric substrate such that the ferrule is hermetically sealed to the dielectric substrate.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: January 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A. Ruben, Andreas Fenner, Andrew J. Ries, Robert A. Munoz, Christopher T. Kinsey, Mark E. Henschel
  • Patent number: 11725995
    Abstract: Various embodiments of a pressure sensor assembly and an implantable medical device that includes such assembly are disclosed. The assembly includes a substrate having a via that extends through the substrate along a via axis between a first major surface and a second major surface of the substrate, a membrane disposed on the first major surface of the substrate and over the via, and a patterned metal layer disposed on a first major surface of the membrane, a portion of such layer including a first capacitor plate. The assembly further includes an integrated circuit disposed adjacent to the first major surface of the membrane and electrically connected to the metal layer. The integrated circuit includes a second capacitor plate disposed on or within a substrate of the integrated circuit. The first capacitor plate and the second capacitor plate form a variable capacitor disposed along the via axis.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Andrew J. Ries, Chetan Patel
  • Publication number: 20220244123
    Abstract: Various embodiments of a pressure sensor assembly and an implantable medical device that includes such assembly are disclosed. The assembly includes a substrate having a via that extends through the substrate along a via axis between a first major surface and a second major surface of the substrate, a membrane disposed on the first major surface of the substrate and over the via, and a patterned metal layer disposed on a first major surface of the membrane, a portion of such layer including a first capacitor plate. The assembly further includes an integrated circuit disposed adjacent to the first major surface of the membrane and electrically connected to the metal layer. The integrated circuit includes a second capacitor plate disposed on or within a substrate of the integrated circuit. The first capacitor plate and the second capacitor plate form a variable capacitor disposed along the via axis.
    Type: Application
    Filed: January 10, 2022
    Publication date: August 4, 2022
    Inventors: Andreas Fenner, David A. Ruben, Andrew J. Ries, Chetan Patel
  • Patent number: 11189390
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 30, 2021
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, Jennifer Lorenz Marckmann, David A. Ruben, James R. Wasson
  • Publication number: 20210210246
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Application
    Filed: October 19, 2020
    Publication date: July 8, 2021
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Publication number: 20210178518
    Abstract: Various embodiments of a hermetic assembly and a method of forming such assembly are disclosed. The hermetic assembly includes a dielectric substrate having a first major surface and a second major surface, a patterned layer connected to the first major surface of the dielectric substrate by a laser bond, and a ferrule having a body and a flange extending from the body. The flange is welded to a welding portion of the patterned layer that is disposed between the flange and the first major surface of the dielectric substrate such that the ferrule is hermetically sealed to the dielectric substrate.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 17, 2021
    Inventors: David A. Ruben, Andreas Fenner, Andrew J. Ries, Robert A. Munoz, Christopher T. Kinsey, Mark E. Henschel
  • Patent number: 10818811
    Abstract: Various embodiments of a power source and method of forming such power source are disclosed. The power source can include a substrate and a cavity disposed in a first major surface of the substrate. The power source can also include radioactive material disposed within the cavity, where the radioactive material emits radiation particles; and particle converting material disposed within the cavity, where the particle converting material converts one or more radiation particles emitted by the radioactive material into light. The power source further includes a sealing layer disposed such that the particle converting material and the radioactive material are hermetically sealed within the cavity, and a photovoltaic device disposed adjacent the substrate. The photovoltaic device can convert at least a portion of the light emitted by the particle converting material that is incident upon an input surface of the photovoltaic device into electrical energy.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: October 27, 2020
    Assignee: Medtronic, Inc.
    Inventors: Andreas A. Fenner, David A. Ruben, Jennifer Lorenz Marckmann, James R. Wasson
  • Patent number: 10811157
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: October 20, 2020
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Publication number: 20200203034
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Andreas FENNER, Jennifer Lorenz MARCKMANN, David A. RUBEN, James R. WASSON
  • Patent number: 10580544
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 3, 2020
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, Jennifer Lorenz Marckmann, David A Ruben, James R Wasson
  • Publication number: 20190267503
    Abstract: Various embodiments of a power source and method of forming such power source are disclosed. The power source can include a substrate and a cavity disposed in a first major surface of the substrate. The power source can also include radioactive material disposed within the cavity, where the radioactive material emits radiation particles; and particle converting material disposed within the cavity, where the particle converting material converts one or more radiation particles emitted by the radioactive material into light. The power source further includes a sealing layer disposed such that the particle converting material and the radioactive material are hermetically sealed within the cavity, and a photovoltaic device disposed adjacent the substrate. The photovoltaic device can convert at least a portion of the light emitted by the particle converting material that is incident upon an input surface of the photovoltaic device into electrical energy.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Andreas A. FENNER, David A. RUBEN, Jennifer Lorenz MARCKMANN, James R. WASSON
  • Patent number: 10290757
    Abstract: Various embodiments of a power source and method of forming such power source are disclosed. The power source can include a substrate and a cavity disposed in a first major surface of the substrate. The power source can also include radioactive material disposed within the cavity, where the radioactive material emits radiation particles; and particle converting material disposed within the cavity, where the particle converting material converts one or more radiation particles emitted by the radioactive material into light. The power source further includes a sealing layer disposed such that the particle converting material and the radioactive material are hermetically sealed within the cavity, and a photovoltaic device disposed adjacent the substrate. The photovoltaic device can convert at least a portion of the light emitted by the particle converting material that is incident upon an input surface of the photovoltaic device into electrical energy.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 14, 2019
    Assignee: Medtronic, Inc.
    Inventors: Andreas A Fenner, David A Ruben, Jennifer Lorenz Marckmann, James R Wasson
  • Publication number: 20190066861
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 28, 2019
    Inventors: Andreas FENNER, David A. RUBEN, Anna J. MALIN, Paul F. GERRISH, Bruce C. FLEISCHHAUER, Larry E. TYLER
  • Patent number: 10096393
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: October 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Publication number: 20180158561
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Application
    Filed: February 8, 2017
    Publication date: June 7, 2018
    Inventors: Andreas Fenner, Jennifer Lorenz Marckmann, David A. Ruben, James R. Wasson
  • Publication number: 20170069775
    Abstract: Various embodiments of a power source and method of forming such power source are disclosed. The power source can include a substrate and a cavity disposed in a first major surface of the substrate. The power source can also include radioactive material disposed within the cavity, where the radioactive material emits radiation particles; and particle converting material disposed within the cavity, where the particle converting material converts one or more radiation particles emitted by the radioactive material into light. The power source further includes a sealing layer disposed such that the particle converting material and the radioactive material are hermetically sealed within the cavity, and a photovoltaic device disposed adjacent the substrate. The photovoltaic device can convert at least a portion of the light emitted by the particle converting material that is incident upon an input surface of the photovoltaic device into electrical energy.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 9, 2017
    Inventors: Andreas A. Fenner, David A. Ruben, Jennifer Lorenz Marckmann, James R. Wasson
  • Patent number: 9496241
    Abstract: A hybrid integrated circuit in a wafer level package for an implantable medical device includes one or more passive component windings formed, at least in part, along one or more routing layers of the package. The windings may be primary and secondary windings of a transformer, wherein all or part of a magnetic core thereof is embedded in a component layer of the wafer level package. If the core includes a part bonded to a surface of the package, that part of the core may be E-shaped with legs extending into the routing layers, and, in some cases, through the routing layers. Routing layers may be formed on both sides of the component layer to accommodate the transformer windings, in some instances.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: November 15, 2016
    Assignee: Medtronic, Inc.
    Inventors: Mohsen Askarinya, Mark R Boone, Andreas A Fenner, Lejun Wang, Kenneth Heames
  • Patent number: 9252415
    Abstract: Arrays of planar solid state batteries are stacked in an aligned arrangement for subsequent separation into individual battery stacks. Prior to stacking, a redistribution layer (RDL) is formed over a surface of each wafer that contains an array; each RDL includes first and second groups of conductive traces, each of the first extending laterally from a corresponding positive battery contact, and each of the second extending laterally from a corresponding negative battery contact. Conductive vias, formed before or after stacking, ultimately couple together corresponding contacts of aligned batteries. If before, each via extends through a corresponding battery contact of each wafer and is coupled to a corresponding conductive layer that is included in another RDL formed over an opposite surface of each wafer. If after, each via extends through corresponding aligned conductive traces and, upon separation of individual battery stacks, becomes an exposed conductive channel of a corresponding battery stack.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: February 2, 2016
    Assignee: Medtronic, Inc.
    Inventors: Mohsen Askarinya, Andreas A. Fenner, Erik J. Herrmann, David A. Ruben, John K. Day