Patents by Inventor Andreas Doring

Andreas Doring has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180094567
    Abstract: Catalytic converter unit for an exhaust gas catalytic converter, in particular an SCR catalytic converter unit for an SCR catalytic converter of a marine diesel internal combustion engine, with multiple catalytic converter modules. Each catalytic converter module has a ceramic catalytic converter body through which exhaust gas flows and a metallic casing for the ceramic catalytic converter body. The respective ceramic catalytic converter body is received in the respective metallic casing and is surrounded in certain sections by the latter. The catalytic converter modules are positioned with first flowed-through ends on a support grating. A counter-brace is positioned at the opposite second flowed-through ends of the catalytic converter modules, and the catalytic converter modules are clamped between the support grating and the counter-brace.
    Type: Application
    Filed: March 23, 2016
    Publication date: April 5, 2018
    Inventors: Andreas DÖRING, Martin FABER, Richard LOSHER, Francis NANA
  • Patent number: 9920700
    Abstract: A method for operating an internal combustion engine having a plurality of cylinders includes: measuring, by exhaust gas sensors arranged at an exhaust gas of every cylinder for which cylinder-specific combustion control is carried out, for each respective cylinder, at least one actual combustion value; comparing each respective measured actual combustion value with a reference combustion value to determine at least one cylinder-specific control deviation for every cylinder for which cylinder-specific combustion control is carried out; determining at least one cylinder-specific control variable for every cylinder for which cylinder-specific combustion control is carried out based on the cylinder-specific control deviation or on every cylinder-specific control deviation; and operating each cylinder for which cylinder-specific combustion control is carried out based on the respective cylinder-specific control variable to bring the respective actual combustion value closer to the respective reference combustion
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: March 20, 2018
    Assignee: MAN Diesel & Turbo SE
    Inventor: Andreas Döring
  • Publication number: 20180010500
    Abstract: Method for operating an internal combustion engine which has a gas combustion system and an exhaust gas post-treatment system. Exhaust gas that leaves the gas combustion system is directed to at least one CH4 oxidation catalytic converter of the exhaust gas post-treatment system. The CH4/NO2 mole ratio in the exhaust gas is set in a defined fashion by at least one gas-combustion-system-side and/or exhaust-gas-post-treatment-system-side measure upstream of at least one CH4 oxidation catalytic converter.
    Type: Application
    Filed: February 4, 2016
    Publication date: January 11, 2018
    Inventors: Andreas DÖRING, Plamen TOSHEV
  • Patent number: 9840957
    Abstract: A method is provided for operating a vehicle, in particular a watercraft, with at least one combustion engine that emits pollutants contained in an exhaust gas or wastewater. The current position of the vehicle is determined by a location determination. A closed-loop and/or open-loop control device is provided which sets or adjusts the quantity of at least one pollutant emitted by the combustion engine in a self-acting manner or automatically, in accordance with the determined position of the vehicle and with information on local pollutant regulations, in particular exhaust and/or water regulations.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: December 12, 2017
    Assignee: MAN TRUCK & BUS AG
    Inventor: Andreas Döring
  • Publication number: 20170314434
    Abstract: An exhaust-gas aftertreatment device (10) for an internal combustion engine, particularly for a marine diesel internal combustion engine operated using heavy fuel oil, includes a housing (11); an exhaust-gas chamber (12) defined by the housing (11), for permitting exhaust gas to flow continuously through the housing (11), an inlet (13) for permitting exhaust gas to flow into the housing and an outlet (14) for permitting exhaust gas to flow out of the housing (11); a sound damping chamber (15), defined by the housing (11) and coupled with the exhaust-gas chamber (12). The sound dampening chamber (15) is constructed to receive a fluid or a pourable solid at a fill level depending on the frequency of an exhaust sound to be damped.
    Type: Application
    Filed: October 21, 2015
    Publication date: November 2, 2017
    Applicant: MAN Diesel & Turbo SE
    Inventor: Andreas DÖRING
  • Patent number: 9803575
    Abstract: A method for operating an internal combustion engine having a motor and an exhaust gas aftertreatment system having an exhaust gas aftertreatment component, wherein exhaust gas formed in the motor during combustion of fuel is guided via the exhaust gas aftertreatment system for cleaning, includes: determining an exhaust gas actual value that depends upon an actual value of a nitrogen dioxide fraction in the exhaust gas upstream of the exhaust gas aftertreatment component; and changing at least one operating parameter for the motor such that the actual value of the nitrogen dioxide fraction is brought closer to a corresponding reference value for the nitrogen dioxide fraction.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: October 31, 2017
    Assignee: MAN Diesel & Turbo SE
    Inventors: Andreas Döring, Markus Bauer
  • Publication number: 20170268399
    Abstract: An exhaust gas post treatment system for an internal combustion engine, in particular a heavy fuel oil-powered engine, including an SCR catalyst, using ammonia as a reducing agent for the denitration of the exhaust gas, and a device positioned upstream of the SCR catalyst by which ammonia or an ammonia precursor substance, which is converted to ammonia, introduced upstream of the SCR catalyst. Downstream of the SCR catalyst an exhaust gas scrubber is positioned, by which excess ammonia, contained in the exhaust gas leaving the SCR catalyst, together with sulfur oxides, can be scrubbed out of the exhaust gas forming ammonium salts while maintaining a pH value of approximately 6. For the control thereof, a bypass around the SCR catalyst can be provided as a westgate, or comprising an additional SCR catalyst.
    Type: Application
    Filed: May 21, 2015
    Publication date: September 21, 2017
    Applicant: Man Diesel & Turbo SE
    Inventor: Andreas DÖRING
  • Publication number: 20170268402
    Abstract: Disclosed is an exhaust-gas after-treatment device for an internal combustion engine, in particular for a ship's diesel internal combustion engine that is operated with heavy oil, including: a housing through which exhaust gas flows; exhaust-gas purification chambers formed in the housing, which chambers hold catalysts and/or particulate filters in order to purify the exhaust gas; and muffler chambers formed in the housing, which chambers have a defined depth for muffling sound in the flow direction. The exhaust-gas purification chambers and the muffler chambers are arranged spatially in series and parallel to one another on the flow side.
    Type: Application
    Filed: April 10, 2015
    Publication date: September 21, 2017
    Inventor: Andreas DÖRING
  • Publication number: 20170218857
    Abstract: A method for operating a system having a plurality of internal combustion engines coupled together such that then outputs are drawn off by a common load, a downstream individual exhaust gas aftertreatment device, in which the exhaust gas of a particular engine undergoes an individual exhaust gas aftertreatment, positioned downstream of each engine, or a common exhaust gas aftertreatment device, in which the exhaust gas undergoes a common exhaust gas aftertreatment, positioned downstream of to the engine. To regenerate an exhaust gas aftertreatment device, the drive output of one engine is reduced, the temperature of the exhaust gas is increased, and the drive output of a second engine is increased such that the drive output reduction is at least partially compensated for.
    Type: Application
    Filed: September 30, 2015
    Publication date: August 3, 2017
    Applicant: MAN DIESEL & TURBO SE
    Inventors: Andreas DÖRING, Alexander KNAFL, Mirko BUGSCH
  • Patent number: 9714593
    Abstract: An exhaust gas aftertreatment system for a vehicle operated by a combustion engine, in particular for a watercraft, includes a turbine of an exhaust turbocharger in an exhaust line, and at least one storage device, by which at least some of the sulphur pollutants contained in the exhaust gas can be stored and/or put into intermediate storage, at least for a defined period of time. According to the invention, particularly for storing the sulphur pollutants in the high-pressure region, the at least one storage device is arranged in the exhaust line upstream of the at least one turbine in a high pressure region of the exhaust line.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: July 25, 2017
    Assignee: MAN TRUCK & BUS AG
    Inventor: Andreas Döring
  • Publication number: 20170204768
    Abstract: A catalyst unit includes: a ceramic catalyst body through which exhaust gas flows and having a substantially cuboid contour with a substantially rectangular inflow side and a substantially rectangular outflow side; a housing that at least partially encloses the catalyst body, and at least one bearing mat positioned in a gap formed between the catalyst body and the housing. Borders or edges of the catalyst body, which delimit the inflow side and the outflow side, each have dimensions of between 210 mm and 280 mm. The gap between the catalyst body and the housing, seen perpendicularly to the throughflow direction of the catalyst body, has a dimension determined according to the following relationship: s?p*5, s being the dimension of the gap in mm and p the dimensionless amount of the density of the or each bearing mat expressed in kg/m2.
    Type: Application
    Filed: July 23, 2015
    Publication date: July 20, 2017
    Inventors: Andreas DÖRING, Richard LOSHER
  • Publication number: 20170204769
    Abstract: A catalyst unit for an exhaust gas catalyst, having a ceramic catalyst body, and a metallic housing which encloses the catalyst body at least in some sections perpendicular to a gas throughflow direction. At least one bearing mat positioned between the catalyst body and the housing perpendicular to the throughflow direction. The catalyst body is retained in the housing via a force-closed press fit with the intermediate arrangement of the or each bearing mat such that, when seen in the throughflow direction of the catalyst body, the press fit between the housing and the catalyst body is formed exclusively at defined axial positions, the housing having groove-like depressions at the defined axial positions for reducing in some sections the inner cross-section of the housing, and the press fit between the housing and the catalyst body being formed exclusively in the region of the groove-like depressions.
    Type: Application
    Filed: June 11, 2015
    Publication date: July 20, 2017
    Inventor: Andrea DÖRING
  • Patent number: 9677450
    Abstract: An exhaust gas retreatment system of an internal combustion engine includes a particle filter; and a sensor positioned, in a flow direction of the exhaust gas, downstream of the particle filter. The sensor is configured to measure the oxygen content and/or the NOx content in the exhaust gas downstream of the particle filter.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: June 13, 2017
    Assignee: MAN Diesel & Turbo SE
    Inventors: Peter Lauer, Andreas Döring
  • Patent number: 9640467
    Abstract: An electronic chip is disclosed, including at least one electronic circuit and two or more contact-making pins, wherein the chip additionally has at least one fixing pin. A sensor arrangement is also disclosed for detecting at least one physical or chemical variable relating to a carrier. The sensor arrangement has at least one sensor element which is directly or indirectly coupled to the carrier, and also has an electronic interface arrangement with at least one leadframe, at least one electronic circuit connected to the leadframe, and also at least one electrically insulating housing part which is embodied in such a way that it performs at least one of the functions of (i) at least partly enclosing the at least one electronic circuit, and (ii) mechanically supporting at least parts of the leadframe to one another.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 2, 2017
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Jakob Schillinger, Stephan Risch, Dietmar Huber, Günther Romhart, Andreas Döring
  • Patent number: 9587539
    Abstract: An exhaust gas after-treatment system for an internal combustion engine, with a particle filter arranged downstream of an internal combustion engine for filtering soot out of the exhaust gas, and with an oxidation catalytic converter arranged upstream of the particle filter and downstream of the internal combustion engine for the oxidation of SO2 into SO3. The SO3 and/or precipitated H2SO4 serves for the oxidation of soot in the particle filter and thus for the regeneration of the particle filter.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: March 7, 2017
    Assignee: MAN Diesel & Turbo SE
    Inventor: Andreas Döring
  • Patent number: 9574482
    Abstract: A method of operating components for exhaust gas after-treatment disposed in the exhaust gas tract of a turbocharged internal combustion engine. A partial exhaust gas stream is removed from the main exhaust gas stream upstream of at least one exhaust gas turbine. The partial exhaust gas stream is fed back into the main exhaust gas stream downstream of the at least one exhaust gas turbine. The feed is located, in terms of exhaust flow, between an NO oxidation catalytic converter and a particle filter (i.e., the exhaust gas after-treatment component). That is, the at least one exhaust gas after-treatment component is arranged downstream of the feed. The quantity of exhaust gas branched off as a partial exhaust gas stream is controlled or closed-loop controlled as a function of at least one target temperature in at least one defined point in the exhaust gas tract, in particular in the partial exhaust gas stream and/or of the at least one exhaust gas after-treatment component.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 21, 2017
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Döring
  • Publication number: 20170030258
    Abstract: An internal combustion engine includes: plural cylinders, a first exhaust gas turbocharger having a high-pressure turbine and a high-pressure compressor, a second exhaust gas turbocharger having a low-pressure turbine and a low-pressure compressor, and an SCR catalytic converter positioned between the high-pressure turbine and the low-pressure turbine, via which exhaust gas leaving the high-pressure turbine is conducted upstream of the low-pressure turbine. The low-pressure compressor is assigned a power take-in, via which the low-pressure compressor can be driven when as a consequence of a relatively large exhaust gas temperature drop at the SCR catalytic converter via the low-pressure turbine an adequate amount of energy required to supply the cylinders of the internal combustion engine with a desired quantity of charge air can no longer be provided.
    Type: Application
    Filed: February 9, 2016
    Publication date: February 2, 2017
    Inventors: Andreas DÖRING, Julia MAIER
  • Publication number: 20160273463
    Abstract: Method for the operation of an internal combustion engine having a plurality of cylinders (11 to detect misfires. An exhaust gas sensor at the exhaust gas of every cylinder of the internal combustion engine measures at least one actual exhaust gas value individually for the respective cylinder, and the respective measured actual exhaust gas value is compared with a reference exhaust gas value to determine at least one cylinder-specific deviation between the reference exhaust gas value and the actual exhaust gas value for each of the cylinders. It is determined for every cylinder based on the cylinder-specific deviation or based on every cylinder-specific deviation whether or not misfires are occurring at the respective cylinder.
    Type: Application
    Filed: September 2, 2014
    Publication date: September 22, 2016
    Inventors: Andreas DÖRING, Matthias AUER
  • Publication number: 20160169134
    Abstract: A method for operating an internal combustion engine having a plurality of cylinders includes: measuring, by exhaust gas sensors arranged at an exhaust gas of every cylinder for which cylinder-specific combustion control is carried out, for each respective cylinder, at least one actual combustion value; comparing each respective measured actual combustion value with a reference combustion value to determine at least one cylinder-specific control deviation for every cylinder for which cylinder-specific combustion control is carried out; determining at least one cylinder-specific control variable for every cylinder for which cylinder-specific combustion control is carried out based on the cylinder-specific control deviation or on every cylinder-specific control deviation; and operating each cylinder for which cylinder-specific combustion control is carried out based on the respective cylinder-specific control variable to bring the respective actual combustion value closer to the respective reference combustion
    Type: Application
    Filed: July 28, 2014
    Publication date: June 16, 2016
    Inventor: Andreas DÖRING
  • Publication number: 20160160722
    Abstract: An exhaust gas aftertreatment system for a vehicle operated by a combustion engine, in particular for a watercraft, includes a turbine of an exhaust turbocharger in an exhaust line, and at least one storage device, by which at least some of the sulphur pollutants contained in the exhaust gas can be stored and/or put into intermediate storage, at least for a defined period of time. According to the invention, particularly for storing the sulphur pollutants in the high-pressure region, the at least one storage device is arranged in the exhaust line upstream of the at least one turbine in a high pressure region of the exhaust line.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 9, 2016
    Inventor: Andreas Döring