Patents by Inventor Andreas Fenner

Andreas Fenner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250065135
    Abstract: Various embodiments of hermetically-scaled packages and systems are disclosed. The hermetically sealed packages or systems include one or more corrosion-resistant vias disposed in the substrate or housing. Each of the one or more corrosion-resistant vias include one or more sidewalls formed by the substrate or housing, a corrosion-resistant alloy, and a hermetic and corrosion-resistant seal formed between the corrosion-resistant alloy and the one or more sidewalls.
    Type: Application
    Filed: December 27, 2022
    Publication date: February 27, 2025
    Inventors: David A. Ruben, Caian Qiu, Andrew J. Ries, Andreas Fenner
  • Patent number: 12233477
    Abstract: Various embodiments of a hermetic assembly and a method of forming such assembly are disclosed. The hermetic assembly includes a dielectric substrate having a first major surface and a second major surface, a patterned layer connected to the first major surface of the dielectric substrate by a laser bond, and a ferrule having a body and a flange extending from the body. The flange is welded to a welding portion of the patterned layer that is disposed between the flange and the first major surface of the dielectric substrate such that the ferrule is hermetically sealed to the dielectric substrate.
    Type: Grant
    Filed: January 5, 2024
    Date of Patent: February 25, 2025
    Assignee: Medtronic, Inc.
    Inventors: David A. Ruben, Andreas Fenner, Andrew J. Ries, Robert A Munoz, Christopher T. Kinsey, Mark E. Henschel
  • Publication number: 20240131625
    Abstract: Various embodiments of a hermetic assembly and a method of forming such assembly are disclosed. The hermetic assembly includes a dielectric substrate having a first major surface and a second major surface, a patterned layer connected to the first major surface of the dielectric substrate by a laser bond, and a ferrule having a body and a flange extending from the body. The flange is welded to a welding portion of the patterned layer that is disposed between the flange and the first major surface of the dielectric substrate such that the ferrule is hermetically sealed to the dielectric substrate.
    Type: Application
    Filed: January 5, 2024
    Publication date: April 25, 2024
    Inventors: David A. Ruben, Andreas Fenner, Andrew J. Ries, Robert A. Munoz, Christopher T. Kinsey, Mark E. Henschel
  • Patent number: 11881325
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: January 23, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Patent number: 11865639
    Abstract: Various embodiments of a hermetic assembly and a method of forming such assembly are disclosed. The hermetic assembly includes a dielectric substrate having a first major surface and a second major surface, a patterned layer connected to the first major surface of the dielectric substrate by a laser bond, and a ferrule having a body and a flange extending from the body. The flange is welded to a welding portion of the patterned layer that is disposed between the flange and the first major surface of the dielectric substrate such that the ferrule is hermetically sealed to the dielectric substrate.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: January 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A. Ruben, Andreas Fenner, Andrew J. Ries, Robert A. Munoz, Christopher T. Kinsey, Mark E. Henschel
  • Patent number: 11725995
    Abstract: Various embodiments of a pressure sensor assembly and an implantable medical device that includes such assembly are disclosed. The assembly includes a substrate having a via that extends through the substrate along a via axis between a first major surface and a second major surface of the substrate, a membrane disposed on the first major surface of the substrate and over the via, and a patterned metal layer disposed on a first major surface of the membrane, a portion of such layer including a first capacitor plate. The assembly further includes an integrated circuit disposed adjacent to the first major surface of the membrane and electrically connected to the metal layer. The integrated circuit includes a second capacitor plate disposed on or within a substrate of the integrated circuit. The first capacitor plate and the second capacitor plate form a variable capacitor disposed along the via axis.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Andrew J. Ries, Chetan Patel
  • Publication number: 20220244123
    Abstract: Various embodiments of a pressure sensor assembly and an implantable medical device that includes such assembly are disclosed. The assembly includes a substrate having a via that extends through the substrate along a via axis between a first major surface and a second major surface of the substrate, a membrane disposed on the first major surface of the substrate and over the via, and a patterned metal layer disposed on a first major surface of the membrane, a portion of such layer including a first capacitor plate. The assembly further includes an integrated circuit disposed adjacent to the first major surface of the membrane and electrically connected to the metal layer. The integrated circuit includes a second capacitor plate disposed on or within a substrate of the integrated circuit. The first capacitor plate and the second capacitor plate form a variable capacitor disposed along the via axis.
    Type: Application
    Filed: January 10, 2022
    Publication date: August 4, 2022
    Inventors: Andreas Fenner, David A. Ruben, Andrew J. Ries, Chetan Patel
  • Patent number: 11189390
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 30, 2021
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, Jennifer Lorenz Marckmann, David A. Ruben, James R. Wasson
  • Publication number: 20210210246
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Application
    Filed: October 19, 2020
    Publication date: July 8, 2021
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Publication number: 20210178518
    Abstract: Various embodiments of a hermetic assembly and a method of forming such assembly are disclosed. The hermetic assembly includes a dielectric substrate having a first major surface and a second major surface, a patterned layer connected to the first major surface of the dielectric substrate by a laser bond, and a ferrule having a body and a flange extending from the body. The flange is welded to a welding portion of the patterned layer that is disposed between the flange and the first major surface of the dielectric substrate such that the ferrule is hermetically sealed to the dielectric substrate.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 17, 2021
    Inventors: David A. Ruben, Andreas Fenner, Andrew J. Ries, Robert A. Munoz, Christopher T. Kinsey, Mark E. Henschel
  • Patent number: 10811157
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: October 20, 2020
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Publication number: 20200203034
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Andreas FENNER, Jennifer Lorenz MARCKMANN, David A. RUBEN, James R. WASSON
  • Patent number: 10580544
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 3, 2020
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, Jennifer Lorenz Marckmann, David A Ruben, James R Wasson
  • Publication number: 20190066861
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 28, 2019
    Inventors: Andreas FENNER, David A. RUBEN, Anna J. MALIN, Paul F. GERRISH, Bruce C. FLEISCHHAUER, Larry E. TYLER
  • Patent number: 10096393
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: October 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Publication number: 20180158561
    Abstract: Various embodiments of a power source and a method of forming such power source are disclosed. The power source can include an enclosure, a substrate disposed within the enclosure, and radioactive material disposed within the substrate and adapted to emit radioactive particles. The power source can further include a diffusion barrier disposed over an outer surface of the substrate, and a carrier material disposed within the enclosure, where the carrier material includes an oxide material.
    Type: Application
    Filed: February 8, 2017
    Publication date: June 7, 2018
    Inventors: Andreas Fenner, Jennifer Lorenz Marckmann, David A. Ruben, James R. Wasson
  • Publication number: 20150279491
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Application
    Filed: March 24, 2015
    Publication date: October 1, 2015
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Publication number: 20140273824
    Abstract: Systems, apparatus and methods configured to facilitate pairing an implantable device with a remote device using a near field communication (NFC) device attached to the implantable device are presented. In an aspect, an implantable device assembly includes an implantable device and an NFC component externally attached to the implantable device. The NFC component is configured to transmit identification information associated with the implantable device to a reader device using NFC protocol. Transmission is in response to a received request signal.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Andreas Fenner, Mohsen Askarinya, Jeffrey York
  • Patent number: 8084841
    Abstract: The present invention describes systems and methods for providing high-density capacitors. An exemplary embodiment of the present invention provides a high-density capacitor system comprising a substrate and a porous conductive layer formed on the substrate, wherein the porous conductive layer is formed in accordance with a predetermined pattern. Furthermore, the high-density capacitor system includes a dielectric material formed on the porous conductive layer and a second conductive layer formed on the dielectric material. Additionally, the high-density capacitor system includes a plurality of conductive pads configured in communication with the second conductive layer.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: December 27, 2011
    Assignees: Georgia Tech Research, Medtronic, Inc.
    Inventors: MarkondeyaRaj Pulugurtha, Andreas Fenner, Anna Malin, Dasharatham Janagama Goud, Rao Tummala
  • Publication number: 20100284123
    Abstract: The present invention describes systems and methods for fabricating high-density capacitors. An exemplary embodiment of the present invention provides a method for fabricating a high-density capacitor system including the steps of providing a substrate and depositing a nanoelectrode particulate paste layer onto the substrate. The method for fabricating a high-density capacitor system further includes sintering the nanoelectrode particulate paste layer to form a bottom electrode. Additionally, the method for fabricating a high-density capacitor system includes depositing a dielectric material onto the bottom electrode with an atomic layer deposition process. Furthermore, the method for fabricating a high-density capacitor system includes depositing a conductive material on the dielectric material to form a top electrode.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 11, 2010
    Inventors: MarkondeyaRaj Pulugurtha, Andreas Fenner, Anna Malin, Kanika Sethi, Himani Sharma, Dasharatham Janagama Goud, Rao Tummala