Patents by Inventor Andreas LOEFFLER

Andreas LOEFFLER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11557698
    Abstract: Disclosed is a conversion element (1) comprising an active region (13) that is formed by a semiconductor material and includes a plurality of barriers (131) and quantum troughs (132), a plurality of first structural elements (14) on a top face (la) of the conversion element (1), and a plurality of second structural elements (15) and/or third structural elements (16) which are arranged on a face of the active region (13) facing away from the plurality of first structural elements (14). Also disclosed is a method for producing a conversion element of said type.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: January 17, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Andreas Loeffler, Adam Bauer, Matthias Peter, Michael Binder
  • Patent number: 11201454
    Abstract: The invention relates to a semiconductor laser comprising a layer structure comprising an active zone, wherein the active zone is configured to generate an electromagnetic radiation, wherein the layer structure comprises a sequence of layers, wherein two opposite end faces are provided in a Z-direction, wherein at least one end face is configured to at least partly couple out the electromagnetic radiation, and wherein the second end face is configured to at least partly reflect the electromagnetic radiation, wherein guide means are provided for forming an optical mode in a mode space between the end faces, wherein means are provided which hinder a formation of an optical mode outside the mode space, in particular modes comprising a propagation direction which do not extend perpendicularly to the end faces.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: December 14, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Clemens Vierheilig, Alfred Lell, Sven Gerhard, Andreas Loeffler
  • Patent number: 11165223
    Abstract: A semiconductor light source is disclosed. In one embodiment, a semiconductor light source includes at least one semiconductor laser configured to generate a primary radiation and at least one conversion element configured to generate a longer-wave visible secondary radiation from the primary radiation, wherein the conversion element includes a semiconductor layer sequence having one or more quantum well layers, wherein, in operation, the primary radiation is irradiated into the semiconductor layer sequence parallel to a growth direction thereof, with a tolerance of at most 15°, wherein, in operation, the semiconductor layer sequence is homogeneously illuminated with the primary radiation, and wherein a growth substrate of the semiconductor layer sequence is located between the semiconductor layer sequence and the semiconductor laser, the growth substrate being oriented perpendicular to the growth direction.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: November 2, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Bernhard Stojetz, Alfred Lell, Christoph Eichler, Andreas Loeffler
  • Patent number: 11004876
    Abstract: A method for producing a semiconductor chip (100) is provided, in which, during a growth process for growing a first semiconductor layer (1), an inhomogeneous lateral temperature distribution is created along at least one direction of extent of the growing first semiconductor layer (1), such that a lateral variation of a material composition of the first semiconductor layer (1) is produced. A semiconductor chip (100) is additionally provided.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: May 11, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Christoph Eichler, Andre Somers, Harald Koenig, Bernhard Stojetz, Andreas Loeffler, Alfred Lell
  • Patent number: 10811582
    Abstract: An arrangement is disclosed. In an embodiment the arrangement includes at least one semiconductor component and a heat sink, wherein the semiconductor component is arranged on the heat sink, wherein the heat sink is configured to dissipate heat from the semiconductor component, wherein the heat sink comprises a thermally conductive material, and wherein the material comprises at least aluminum and silicon.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: October 20, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Andreas Loeffler, Thomas Hager, Christoph Walter, Alfred Lell
  • Patent number: 10811843
    Abstract: The disclosure relates to a semiconductor laser includes a semiconductor layer sequence with an-n-type n-region, a p-type p-region and an active zone lying between the two for the purpose of generating laser radiation. A p-contact layer that is permeable to the laser radiation and consists of a transparent conductive oxide is located directly on the p-region for the purpose of current input. An electrically-conductive metallic p-contact structure is applied directly to the p-contact layer. The p-contact layer is one part of a cover layer, and therefore the laser radiation penetrates as intended into the p-contact layer during operation of the semiconductor laser. Two facets of the semiconductor layer sequence form resonator end surfaces for the laser radiation.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: October 20, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Sven Gerhard, Alfred Lell, Clemens Vierheilig, Andreas Loeffler, Christoph Eichler
  • Publication number: 20200303898
    Abstract: A semiconductor light source is disclosed. In one embodiment, a semiconductor light source includes at least one semiconductor laser configured to generate a primary radiation and at least one conversion element configured to generate a longer-wave visible secondary radiation from the primary radiation, wherein the conversion element includes a semiconductor layer sequence having one or more quantum well layers, wherein, in operation, the primary radiation is irradiated into the semiconductor layer sequence parallel to a growth direction thereof, with a tolerance of at most 15°, wherein, in operation, the semiconductor layer sequence is homogeneously illuminated with the primary radiation, and wherein a growth substrate of the semiconductor layer sequence is located between the semiconductor layer sequence and the semiconductor laser, the growth substrate being oriented perpendicular to the growth direction.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 24, 2020
    Inventors: Bernhard Stojetz, Alfred Lell, Christoph Eichler, Andreas Loeffler
  • Patent number: 10784653
    Abstract: A laser bar includes a semiconductor layer including a plurality of layers and includes an active zone, wherein the active zone is arranged in an x-y-plane, laser diodes each form a mode space in an x-direction between two end faces, the mode spaces of the laser diodes are arranged alongside one another in a y-direction, a trench is provided in the semiconductor layer between two mode spaces, the trenches extend in the x-direction, and the trenches extend from a top side of the semiconductor layer in a z-direction to a predefined depth in the direction of the active zone.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: September 22, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Andreas Loeffler, Clemens Vierheilig, Sven Gerhard
  • Patent number: 10637211
    Abstract: A light-emitting semiconductor chip (100) is provided, having a first semiconductor layer (1), which is at least part of an active layer provided for generating light and which has a lateral variation of a material composition along at least one direction of extent. Additionally provided is a method for producing a semiconductor chip (100).
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: April 28, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Christoph Eichler, Andre Somers, Bernhard Stojetz, Andreas Loeffler, Alfred Lell
  • Publication number: 20190393676
    Abstract: The invention relates to a semiconductor laser (1) comprising a semiconductor layer sequence (2) with an n-type n-region (21), a p-type p-region (23) and an active zone (22) lying between the two for the purpose of generating laser radiation. A p-contact layer (3) that is permeable to the laser radiation and consists of a transparent conductive oxide is located directly on the p-region (23) for the purpose of current input. An electrically-conductive metallic p-contact structure (4) is applied directly to the p-contact layer (3). The p-contact layer (3) is one part of a cover layer, and therefore the laser radiation penetrates as intended into the p-contact layer (3) during operation of the semi-conductor laser (1). Two facets (25) of the semiconductor layer sequence (2) form resonator end surfaces for the laser radiation. Current input into the p-region (23) is inhibited in at least one current protection region (5) directly on at least one of the facets (25).
    Type: Application
    Filed: September 27, 2016
    Publication date: December 26, 2019
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Sven GERHARD, Alfred LELL, Clemens VIERHEILIG, Andreas LOEFFLER, Christoph EICHLER
  • Publication number: 20190355768
    Abstract: A method for producing a semiconductor chip (100) is provided, in which, during a growth process for growing a first semiconductor layer (1), an inhomogeneous lateral temperature distribution is created along at least one direction of extent of the growing first semiconductor layer (1), such that a lateral variation of a material composition of the first semiconductor layer (1) is produced. A semiconductor chip (100) is additionally provided.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Inventors: Christoph EICHLER, Andre SOMERS, Harald KOENIG, Bernhard STOJETZ, Andreas LOEFFLER, Alfred LELL
  • Publication number: 20190319162
    Abstract: A semiconductor chip (100) is provided, having a first semiconductor layer (1), which has a lateral variation of a material composition along at least one direction of extent. Additionally provided is a method for producing a semiconductor chip (100).
    Type: Application
    Filed: June 25, 2019
    Publication date: October 17, 2019
    Inventors: Alfred LELL, Andreas LÖEFFLER, Christoph EICHLER, Bernhard STOJETZ, André SOMERS
  • Patent number: 10396106
    Abstract: A method for producing a semiconductor chip (100) is provided, in which, during a growth process for growing a first semiconductor layer (1), an inhomogeneous lateral temperature distribution is created along at least one direction of extent of the growing first semiconductor layer (1), such that a lateral variation of a material composition of the first semiconductor layer (1) is produced. A semiconductor chip (100) is additionally provided.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: August 27, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Christoph Eichler, Andre Somers, Harald Koenig, Bernhard Stojetz, Andreas Loeffler, Alfred Lell
  • Patent number: 10388823
    Abstract: A semiconductor chip (100) is provided, having a first semiconductor layer (1), which has a lateral variation of a material composition along at least one direction of extent. Additionally provided is a method for producing a semiconductor chip (100).
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: August 20, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alfred Lell, Andreas Loeffler, Christoph Eichler, Bernhard Stojetz, Andre Somers
  • Patent number: 10388829
    Abstract: The invention describes a radiation-emitting semiconductor component (100) having a first semiconductor layer sequence (10) which is designed to generate radiation of a first wavelength, a second semiconductor layer sequence (20), a first electrode area (1) and a second electrode area (2). It is provided that the second semiconductor layer sequence (20) has a quantum pot structure (21) with a quantum layer structure (22) and a barrier layer structure (23) and is designed to generate incoherent radiation of a second wavelength by means of absorption of the radiation of the first wavelength, and an electric field can be generated in the second semiconductor layer sequence (20) by the first electrode area (1) and the second electrode area (2).
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: August 20, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Adam Bauer, Andreas Loeffler
  • Publication number: 20190229497
    Abstract: The invention relates to a semiconductor laser comprising a layer structure comprising an active zone, wherein the active zone is configured to generate an electromagnetic radiation, wherein the layer structure comprises a sequence of layers, wherein two opposite end faces are provided in a Z-direction, wherein at least one end face is configured to at least partly couple out the electromagnetic radiation, and wherein the second end face is configured to at least partly reflect the electromagnetic radiation, wherein guide means are provided for forming an optical mode in a mode space between the end faces, wherein means are provided which hinder a formation of an optical mode outside the mode space, in particular modes comprising a propagation direction which do not extend perpendicularly to the end faces.
    Type: Application
    Filed: April 7, 2017
    Publication date: July 25, 2019
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Clemens VIERHEILIG, Alfred LELL, Sven GERHARD, Andreas LOEFFLER
  • Publication number: 20190052062
    Abstract: A laser bar includes a semiconductor layer including a plurality of layers and includes an active zone, wherein the active zone is arranged in an x-y-plane, laser diodes each form a mode space in an x-direction between two end faces, the mode spaces of the laser diodes are arranged alongside one another in a y-direction, a trench is provided in the semiconductor layer between two mode spaces, the trenches extend in the x-direction, and the trenches extend from a top side of the semiconductor layer in a z-direction to a predefined depth in the direction of the active zone.
    Type: Application
    Filed: February 23, 2017
    Publication date: February 14, 2019
    Inventors: Andreas Loeffler, Clemens Vierheilig, Sven Gerhard
  • Publication number: 20180375002
    Abstract: Disclosed is a conversion element (1) comprising an active region (13) that is formed by a semiconductor material and includes a plurality of barriers (131) and quantum troughs (132), a plurality of first structural elements (14) on a top face (la) of the conversion element (1), and a plurality of second structural elements (15) and/or third structural elements (16) which are arranged on a face of the active region (13) facing away from the plurality of first structural elements (14). Also disclosed is a method for producing a conversion element of said type.
    Type: Application
    Filed: January 17, 2017
    Publication date: December 27, 2018
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas LOEFFLER, Adam BAUER, Matthias PETER, Michael BINDER
  • Publication number: 20180323573
    Abstract: A semiconductor laser includes a semiconductor layer sequence, an active zone, a ridge waveguide as an elevation of a top side of the semiconductor layer sequence, the longitudinal axis of which is oriented along the active zone, a contact metalization, and a current flow layer in direct contact with the contact metalization, wherein the top side of the semiconductor layer sequence includes a section adjoining one of the two facets over the width of the section relative to a longitudinal axis of the ridge waveguide, the section includes a subsection of the top side of the ridge waveguide, the subsection adjoins one of two facets over a width of the ridge waveguide relative to the longitudinal axis of the ridge waveguide, the section is partly delimited by a plurality of current flow layer sections of the current flow layer, and the section is free of the current flow layer.
    Type: Application
    Filed: November 4, 2016
    Publication date: November 8, 2018
    Inventors: Sven Gerhard, Clemens Vierheilig, Andreas Loeffler
  • Publication number: 20180182946
    Abstract: An arrangement is disclosed. In an embodiment the arrangement includes at least one semiconductor component and a heat sink, wherein the semiconductor component is arranged on the heat sink, wherein the heat sink is configured to dissipate heat from the semiconductor component, wherein the heat sink comprises a thermally conductive material, and wherein the material comprises at least aluminum and silicon.
    Type: Application
    Filed: June 15, 2016
    Publication date: June 28, 2018
    Inventors: Andreas Loeffler, Thomas Hager, Christoph Walter, Alfred Lell