Patents by Inventor Andreas Lopp

Andreas Lopp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170081755
    Abstract: An evaporation source array for depositing two or more organic materials on a substrate is described. The evaporation source array includes two or more evaporation crucibles, wherein the two or more evaporation crucibles are configured to evaporate the two or more organic materials, two or more distribution pipes with outlets provided along the length of the two or more distribution pipes, wherein a first distribution pipe of the two or more distribution pipes is in fluid communication with a first evaporation crucible of the two or more evaporation crucibles, two or more heat shields, which surround the first distribution pipe, a cooling shield arrangement provided at at least one side of the two or more distribution pipes, wherein the at least one side is the side at which the outlets are provided, and a cooling element provided at or in the cooling shield arrangement for active cooling of the cooling shield arrangement.
    Type: Application
    Filed: March 21, 2014
    Publication date: March 23, 2017
    Inventors: Jose Manuel DIEGUEZ-CAMPO, Stefan BANGERT, Andreas LOPP, Uwe SCHÜSSLER
  • Publication number: 20160189939
    Abstract: A deposition apparatus and a method for depositing deposition material on a web is described. The deposition apparatus includes a first sputter device support defining a first axis for a first rotatable sputter device, a second sputter device support defining a second axis for a second rotatable sputter device, and a coating window. The first sputter device support and the second sputter device support are adapted for supporting the first rotatable sputter device and the second rotatable sputter device to provide at least a component of the deposition material to be deposited on the web over a coating drum. Further, the distance between the first axis and the second axis is smaller than 200 mm.
    Type: Application
    Filed: March 12, 2012
    Publication date: June 30, 2016
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Thomas DEPPISCH, Frank SCHNAPPENBERGER, Andreas LOPP, Annemarie FLOCK, Götz GÖRISCH
  • Publication number: 20160043319
    Abstract: The embodiments described herein generally relate to active alignment of a fine metal mask. The fine metal mask is connected with a frame through a plurality of microactuators. The microactuators can act on the fine metal mask to stretch the mask, reposition the mask or both. In this way, the position and size of the fine metal mask can be maintained in relation to the substrate.
    Type: Application
    Filed: April 21, 2014
    Publication date: February 11, 2016
    Applicant: Applied Materials, Inc.
    Inventors: John M. WHITE, Robert Jan VISSER, Dieter HAAS, Tommaso VERCESI, Andreas LOPP
  • Publication number: 20150214018
    Abstract: A method for coating a substrate by means of a cathode arrangement including at least two rotatable cathodes is disclosed. The method includes rotating at least one of the at least two rotatable cathodes in a first direction, and, at the same time, rotating at least one of the at least two rotatable cathodes in a second direction. The first direction is opposite to the second direction. Furthermore, a controller for controlling a coating process is disclosed. Furthermore, a coater for coating a substrate is disclosed. The coater includes a cathode arrangement with at least two rotatable cathodes and a controller as disclosed herein.
    Type: Application
    Filed: May 29, 2012
    Publication date: July 30, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Evelyn Scheer, Markus Hanika, Konrad Schwanitz, Fabio Pieralisi, Andreas Klöppel, Jian Liu, Andreas Lopp
  • Patent number: 9005414
    Abstract: The disclosure relates to a magnet arrangement for a sputtering system, wherein the magnet arrangement is adapted for a rotatable target of a sputtering system and includes: a first magnet element extending along a first axis; a second magnet element being disposed around the first magnet element symmetrically to a first plane; wherein the second magnet element includes at least one magnet section intersecting the first plane; and wherein a magnetic axis of the at least one magnet section is inclined with respect to a second plane being orthogonal to the first axis. Further, the disclosure relates to a target backing tube for a rotatable target of a sputtering system, a cylindrical rotatable target for a sputtering system, and a sputtering system.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: April 14, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Andreas Lopp, Juergen Grillmayer, Wolfgang Krock
  • Publication number: 20150004312
    Abstract: An deposition apparatus for forming a deposition material layer on a substrate is described. The deposition apparatus includes a substrate support adapted for holding a substrate; and an edge (660) exclusion mask (640) for covering a periphery of the substrate (610) during layer deposition. The mask has at least one frame portion defining an aperture. The at least one frame portion of the mask is adapted for being moved (670,680) with respect to the substrate depending on the amount of deposition material deposited on the at least one frame portion of the mask. Further, a method for depositing a deposition material layer on a substrate using an edge exclusion mask is described.
    Type: Application
    Filed: August 9, 2011
    Publication date: January 1, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Evelyn Scheer, Markus Hanika, Ralph Lindenberg, Marcus Bender, Andreas Lopp, Konrad Schwanitz, Fabio Pieralisi, Jian Liu
  • Publication number: 20140332369
    Abstract: A cathode assembly for a sputter deposition apparatus and a method for coating a substrate is provided. The cathode assembly has a coating side for coating on a substrate. Further, the cathode assembly includes a rotary target assembly adapted for rotating a target material around a rotary axis; at least a first magnet having an inner magnet pole and at least one outer magnet poles and being adapted for generating one or more plasma regions. The cathode assembly has a first angular coordinate for a magnet pole, the magnet pole being provided for the coating side, and a second angular coordinate for a further magnet pole, the magnet pole being provided for the coating side; wherein the first angular coordinate and the second angular coordinate define an angle a larger than about 20 degrees and smaller than about 160 degrees.
    Type: Application
    Filed: October 11, 2011
    Publication date: November 13, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Evelyn Scheer, Markus Hanika, Ralph Lindenberg, Marcus Bender, Andreas Lopp, Konrad Schwanitz, Fabio Pieralisi, Jian Liu
  • Patent number: 8869967
    Abstract: A dynamic load lock chamber that includes a plurality of actuators positioned along its length to achieve a desired pressure gradient from an atmospheric pressure side to a processing pressure side of the chamber is provided. The chamber includes a transport belt continuously running through the chamber to transport substrates from the atmospheric pressure side to the processing pressure side of the chamber, if situated on an inlet side of a production line, and from the processing pressure side to the atmospheric pressure side of the chamber, if positioned on an outlet side of the production line. Separation mechanisms may be attached to the belt to separate discrete regions within the chamber into a plurality of discrete volumes. Substrates may be disposed between the separation mechanisms, such that separation between adjacent pressure regions within the chamber is maintained as the substrates are transported through the chamber.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: October 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Buschbeck, Juergen Henrich, Andreas Lopp, Susanne Schlaefer
  • Publication number: 20130284590
    Abstract: The present disclosure describes a method of coating a substrate, the method including forming a layer of sputtered material on the substrate. Forming the layer of sputtered material may include: sputtering material from at least one rotatable target over the substrate; varying the relative position between the at least one target and the substrate. In addition, the present disclosure describes varying the distance between a target and a substrate during the sputter process. The present disclosure further describes a system for coating a substrate.
    Type: Application
    Filed: July 22, 2011
    Publication date: October 31, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Marcus Bender, Markus Hanika, Evelyn Scheer, Fabio Pieralisi, Guido Mahnke, Ralph Lindenberg, Andreas Lopp, Konrad Schwanitz, Jian Liu
  • Publication number: 20130199891
    Abstract: A dynamic load lock chamber that includes a plurality of actuators positioned along its length to achieve a desired pressure gradient from an atmospheric pressure side to a processing pressure side of the chamber is provided. The chamber includes a transport belt continuously running through the chamber to transport substrates from the atmospheric pressure side to the processing pressure side of the chamber, if situated on an inlet side of a production line, and from the processing pressure side to the atmospheric pressure side of the chamber, if positioned on an outlet side of the production line. Separation mechanisms may be attached to the belt to separate discrete regions within the chamber into a plurality of discrete volumes. Substrates may be disposed between the separation mechanisms, such that separation between adjacent pressure regions within the chamber is maintained as the substrates are transported through the chamber.
    Type: Application
    Filed: January 23, 2013
    Publication date: August 8, 2013
    Inventors: Wolfgang BUSCHBECK, Juergen HENRICH, Andreas LOPP, Susanne SCHLAEFER
  • Publication number: 20130171757
    Abstract: The present invention generally provides a high throughput substrate processing system that is used to form one or more regions of a solar cell device. In one configuration of a processing system, one or more solar cell passivating or dielectric layers are deposited and further processed within one or more processing chambers contained within the high throughput substrate processing system. The processing chambers may be, for example, plasma enhanced chemical vapor deposition (PECVD) chambers, low pressure chemical vapor deposition (LPCVD) chambers, atomic layer deposition (ALD) chambers, physical vapor deposition (PVD) or sputtering chambers, thermal processing chambers (e.g., RTA or RTO chambers), substrate reorientation chambers (e.g., flipping chambers) and/or other similar processing chambers.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 4, 2013
    Inventors: HARI K. PONNEKANTI, Alexander S. Polyak, James L'Heureux, Michael S. Cox, Christopher T. Lane, Edward P. Hammond, IV, Hemant P. Mungekar, Susanne Schlaefer, Wolfgang Buschbeck, Juergen Henrich, Andreas Lopp
  • Publication number: 20120107504
    Abstract: A deposition system is provided which is adapted for depositing a thin film onto a substrate. The deposition system includes a substrate carrier adapted for carrying the substrate and at least one tilted evaporator crucible. The at least one tilted evaporator crucible is adapted for directing evaporated deposition material towards the substrate in a main emission direction. The main direction emission of the tilted evaporator crucible is different from a direction normal to the substrate.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Philipp MAURER, Sven SCHRAMM, Andreas LOPP, Andreas KLÖPPEL
  • Patent number: 8137510
    Abstract: This invention relates to a coater for the coating, in particular, of large-area substrates by means of cathode sputtering, the coater having a coating chamber and, provided therein, a cathode assembly (2) where the material to be sputtered is located on a target (4) with a curved surface, the material to be sputtered being located, in particular, on the lateral surface of a cylinder, there being in a single coating chamber for a coherent coating zone at least three, preferably more, cathode assemblies (2) with rotatable, curved targets (4) positioned one beside the other.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: March 20, 2012
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Stefan Bangert, Frank Fuchs, Ralph Lindenberg, Andreas Lopp, Uwe Schüssler, Tobias Stolley
  • Publication number: 20120012458
    Abstract: The disclosure relates to a magnet arrangement for a sputtering system, wherein the magnet arrangement is adapted for a rotatable target of a sputtering system and includes: a first magnet element extending along a first axis; a second magnet element being disposed around the first magnet element symmetrically to a first plane; wherein the second magnet element includes at least one magnet section intersecting the first plane; and wherein a magnetic axis of the at least one magnet section is inclined with respect to a second plane being orthogonal to the first axis.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 19, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Andreas LOPP, Juergen GRILLMAYER, Wolfgang KROCK
  • Publication number: 20110100799
    Abstract: A sputter deposition system adapted for depositing a thin film onto a substrate surface is provided. The system includes a cathode assembly having at least two cathode targets opposing the substrate surface and adapted for providing cathode material for forming the thin film. A plasma source is adapted for generating a plasma for sputtering cathode material off the at least two cathode targets. A magnetic field generator is adapted for providing a magnetic field which is controllable independently of the plasma source such that such that a difference between high deposition rate portions and low deposition rate portions is compensated by the action of the magnetic field on charged particle movements.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 5, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Andreas Lopp, Marcus Bender
  • Publication number: 20100025370
    Abstract: A reactive gas distributor for a reactive gas treatment system is provided, comprising a housing, a reactive gas inlet provided at one side of the housing and fluidly connectable to a remote plasma source, and a plurality of reactive gas outlets at another side of the housing and arranged in a pattern.
    Type: Application
    Filed: August 4, 2008
    Publication date: February 4, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Manuel Dieguez-Campo, Andreas Lopp, Reiner Gertmann
  • Patent number: 7575662
    Abstract: The invention relates to a method for operating a magnetron sputter cathode, in particular a tube cathode or several tube cathodes forming an array. In such cathodes a target passes through a magnetic field, whereby induction currents flow in the target which distort the magnetic field. This results in the nonuniform coating of a substrate. By having the relative movement between magnetic field and target alternately reverse its direction, the effect of the magnetic field distortion can be compensated. This yields greater uniformity of the coating on a substrate to be coated.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 18, 2009
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Stefan Bangert, Wolfgang Buschbeck, Markus Hanika, Karl-Albert Keim, Michael Konig, Jorg Krempel-Hesse, Andreas Lopp, Harald Rost, Jurgen Schroeder, Tobias Stolley
  • Publication number: 20090178919
    Abstract: A sputter coating installation 1 comprises a vacuum chamber having an interior space 3?. The interior space 3? of the vacuum chamber is defined by chamber walls 3. According to the present invention, an array of target units 9 is arranged in line inside the vacuum coating chamber. Particularly, the target units 9 are arranged tiltable relative to the vacuum chamber and relative to a transport path t of a substrate 2. The target units 9 are cathode units or magnetron units and comprise a target and a housing. The housing is attached to the target and defines an interior space of the target unit. Within the interior space of the target units a number of components are arranged, e.g. a combination of a magnet yoke and a magnet system, a magnet yoke drive, a cooling system (arranged near the target), an electric current supply for supplying energy for the sputter process, etc.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 16, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Andreas Lopp, Ralph Lindenberg
  • Patent number: 7531071
    Abstract: A magnetic arrangement for a planar magnetron, in which an initial magnetic pole encompasses a second magnetic pole. This magnetic arrangement is moved linear in longitudinal direction to a target by a specific value and then moved back in opposite direction by the same value. In one version, an additional perpendicular motion is effected. The magnet arrangement is designed so that north and south pole interlock and waviform racetracks are generated. This enables constant sputtering from the entire target surface.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: May 12, 2009
    Assignee: Applied Materials GmbH & Co. KG.
    Inventors: Thomas Deppisch, Andreas Lopp
  • Publication number: 20090114528
    Abstract: A magnet/target assembly 1 comprises a target 2 consisting of a plurality of (virtual) segments 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 arranged side by side, each of them extending along the longitudinal axis x of the target 2. Each of the plurality of target segments 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 has a magnet system 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 attributed to the respective target segment. In an embodiment of the target/magnet assembly 1 according to the present invention the magnet systems 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 are arranged mutually offset relative to their respective adjacent magnet systems 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6, respectively, while scanning the target segments 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, respectively. Particularly, the first magnet system 3.1, the third magnet system 3.3 and the fifth magnet system 3.5 are a first group of magnet systems moving parallel and synchronously with each other, and the second magnet system 3.2, the forth magnet systems 3.4 and the sixth magnet system 3.
    Type: Application
    Filed: November 7, 2007
    Publication date: May 7, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Ralph Lindenberg, Marcus Bender, Tobias Stolley, Andreas Kloeppel, Andreas Lopp, Christoph Moelle