Patents by Inventor Andreas Maierhofer

Andreas Maierhofer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925479
    Abstract: The present invention relates to a method of determining the body temperature or a temperature correlated therewith of a patient connected to an extracorporeal blood circuit, wherein the extracorporeal blood circuit has a heat exchanger which is flowed through by blood at one side and by a heat carrier medium at the other side, wherein the temperature (Tdi) of the heat carrier medium at the inlet side is measured at the inlet of the heat exchanger and the temperature (Tdo) of the heat carrier medium at the outlet side is measured at the outlet of the heat exchanger and the volume flow of the heat carrier medium (Qd) is measured; and in that the temperature (Tbi) of the blood at the inlet side is determined at the inlet of the heat exchanger in accordance with the relationship Tbi=Tdi (Qd/D) (Tdo?Tdi), where the value D is a value characteristic of the heat transfer by the heat exchanger.
    Type: Grant
    Filed: September 4, 2017
    Date of Patent: March 12, 2024
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventor: Andreas Maierhofer
  • Patent number: 11858021
    Abstract: A control device (3b) for a roll stand (1). During rolling of a metal strip (2) in the roll stand (1), the device receives measurement data (M) for a lateral position (y) of the metal strip (2) on the inlet side and/or outlet side of the roll stand (1). Taking into account parameters (P) of the stand regulator (3a) on the basis of the deviation in the lateral position (y) from a target position (y*), a stand regulator (3a) of the control device (3b) determines a tilt value (?s) for the roll stand (1) and controls the roll stand (1) accordingly. The control device (3b) determines at least one variable (V1, V2, Q1, Q2) from which it is derived, for both strip edges (7, 8) of the metal strip (2), whether the metal strip (2) forms an undulation (9) in the region of the particular strip edge (7, 8).
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: January 2, 2024
    Inventors: Martin Kerschensteiner, Daniel Kotzian, Matthias Kurz, Klaus Loehe, Andreas Maierhofer, Daniel Ott, Mirko Tunk
  • Publication number: 20230414848
    Abstract: A method for determining a treatment regimen for altering the treatment parameters when dialyzing a patient over a plurality of treatment sessions taking place on future days includes determining a diffusive total target sodium balance; and determining a transitional treatment regimen by which the diffusive total target sodium balance is achieved over the plurality of future treatment sessions. A control device or closed-loop control device is configured to control a blood treatment apparatus using the method.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventor: Andreas Maierhofer
  • Patent number: 11786644
    Abstract: A method for determining a treatment regimen for altering the treatment parameters when dialyzing a patient over a plurality of treatment sessions taking place on future days includes determining a diffusive total target sodium balance; and determining a transitional treatment regimen by which the diffusive total target sodium balance is achieved over the plurality of future treatment sessions. A control device or closed-loop control device is configured to control a blood treatment apparatus using the method.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 17, 2023
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventor: Andreas Maierhofer
  • Patent number: 11596725
    Abstract: The invention relates to a device for extracorporeal blood treatment, comprising a blood treatment unit 1 that comprises at least one compartment 4. The invention further relates to a method for determining a hemodynamic parameter during an extracorporeal blood treatment by means of an extracorporeal blood treatment device. In order to determine the hemodynamic parameter, the conveying direction of the blood pump 10 is reversed from a “normal” blood flow to a “reversed” blood flow. In practice, it has been found that reversing the conveying direction of the blood pump for a measurement for determining a hemodynamic parameter carries the risk of blood clots reaching the patient, despite the dialyser holding back blood clots. The blood treatment device comprises an input unit 23 for inputting a time interval which can be specified by the user, taking into account the patient-specific and system-specific factors.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 7, 2023
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventor: Andreas Maierhofer
  • Patent number: 11529450
    Abstract: The invention relates to a blood treatment device having an extracorporeal blood circuit which comprises an arterial line, a blood pump, a blood treatment unit and a venous line, wherein the arterial and venous lines can be connected to a blood vessel of a patient, and wherein the blood treatment device has an evaluation and control unit, wherein the evaluation and control unit is configured to carry out the following steps: (a1) determining the blood recirculation in a blood vessel of the patient connected to the extracorporeal blood circuit; and (b) calculating the blood flow in the blood vessel using the blood recirculation determined in accordance with (a1) and using a provided value or a value likewise previously determined for the cardiac output of the patient.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: December 20, 2022
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventors: Andreas Maierhofer, Wei Zhang
  • Publication number: 20220313879
    Abstract: The present disclosure relates to a calculation device for determining an interdialytic sodium intake of a patient and/or for determining a non-osmotically triggered interdialytic liquid intake, including a storage device and/or an input device configured for storing or for entering parameter values of the patient; a computing device, configured for calculating the interdialytic sodium intake of the patient and/or for calculating his non-osmotically triggered interdialytic liquid intake; and an output device for outputting a signal for controlling or closed-loop controlling a communication device and/or a medical blood treatment apparatus.
    Type: Application
    Filed: June 3, 2020
    Publication date: October 6, 2022
    Inventor: Andreas Maierhofer
  • Patent number: 11364526
    Abstract: A metal strip is rolled in a roll stand and a control device for the roll stand determines, by means of a working cycle, a number of manipulated variables for flatness actuators of the roll stand and actuates them accordingly. The control device implements an optimizer, which provisionally sets the current correction values, and determines a totality of flatness values. Then, the optimizer minimizes the relationship by varying the current correction variables. When determining the current correction variables (s), the optimizer considers linear ancillary conditions, based at least in part on a vector having the ancillary conditions upheld by the current correction values and a vector having the ancillary conditions upheld by the difference of the current correction values relative to the correction values of the preceding working cycle. The control device determines the manipulated variables for the flatness actuators in consideration of the determined current correction variables.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 21, 2022
    Assignee: Primetals Technologies Germany GmbH
    Inventors: Matthias Dressler, Andreas Maierhofer, Andreas Müller, Alexander Thekale, Slobodan Veljovic
  • Patent number: 11324868
    Abstract: The invention relates to an apparatus for extracorporeal blood treatment, comprising a blood treatment unit 1 that comprises at least one compartment 3. The invention further relates to an apparatus 15A, 15B for collecting blood clots for a blood line 5, 7 for supplying blood to or removing blood from a blood treatment unit 1 of an extracorporeal blood treatment apparatus, and to a method for determining a hemodynamic parameter during extracorporeal blood treatment using an extracorporeal blood treatment apparatus. In order to determine the hemodynamic parameter, the conveying direction of the blood pump 10 is reversed from a “normal” blood flow to a “reversed” blood flow. It has been found in practice that, in the event of a reversal in the conveying direction of the blood pump in order to carry out a measurement for determining a hemodynamic parameter, there is a risk of blood clots reaching the patients, although the dialyser traps blood clots.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: May 10, 2022
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventor: Andreas Maierhofer
  • Patent number: 11294338
    Abstract: An automation system (1) determines control data (S?), outputs same to controlled elements (5) of the facility (ANL) and thereby controls the facility (ANL). Sensor devices (2) acquire measurement data (M) of the facility (ANL) and at least partly feed same to the automation system (1) and a man-machine interface (3). Said man-machine interface (3) receives planning data (P) from a production planning system (11) and/or control data (S?) and/or internal data (I) from the automation system (1). The interface outputs the data (M, S?, I) to a person (4). It furthermore receives control commands (S) from the person (4) and forwards them to the automation system (1). The automation system (1) processes the measurement data (M) and the control commands (S) when determining the control data (S?). An artificial intelligence unit (9) receives at least part of the measurement data (M), control data (S?) and/or internal data (I) and the data output to the person (4). It also receives the control commands (S).
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 5, 2022
    Inventors: Dieter Bettinger, Kurt Herzog, Thomas Kuehas, Matthias Kurz, Andreas Maierhofer, Thomas Matschullat, Günther Winter
  • Patent number: 10896755
    Abstract: Alarm messages, which are output by a medical apparatus, are remotely processed on a remote application apparatus under consideration of a safety check and in particular with regard to whether the user who is working at the application apparatus is in visual contact with the alarm message-triggering medical apparatus. The medical apparatus may be a hemodialysis apparatus or a peritoneal dialysis apparatus, or another type of medical apparatus.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: January 19, 2021
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Andreas Maierhofer, Carsten Müller
  • Publication number: 20200330668
    Abstract: A method for determining a treatment regimen for altering the treatment parameters when dialyzing a patient over a plurality of treatment sessions taking place on future days includes determining a diffusive total target sodium balance; and determining a transitional treatment regimen by which the diffusive total target sodium balance is achieved over the plurality of future treatment sessions. A control device or closed-loop control device is configured to control a blood treatment apparatus using the method.
    Type: Application
    Filed: December 17, 2018
    Publication date: October 22, 2020
    Inventor: Andreas Maierhofer
  • Patent number: 10780474
    Abstract: A metal band is first rolled in a front and then in a rear (downstream) roll stand of a multi-stand rolling train. A looper between the roll stands may detect a band tension in the metal band. The band tension is supplied to a first and a second tension controller to determine an application additional target value and a speed additional target value. The second tension controller may only determine a value less than or greater than 0, as the speed additional target value, if the band tension is above or below an upper or lower band tension limit. Otherwise, the speed additional target value may be 0. The first tension controller is also supplied with a target tension that falls between the band tension limits. The application additional target value may be used to act on the rear roll stand.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: September 22, 2020
    Assignee: PRIMETALS TECHNOLOGIES GERMANY GMBH
    Inventors: Ansgar Grüss, Daniel Kotzian, Andreas Maierhofer
  • Publication number: 20200188572
    Abstract: The invention relates to a device for extracorporeal blood treatment, comprising a blood treatment unit 1 that comprises at least one compartment 4. The invention further relates to a method for determining a hemodynamic parameter during an extracorporeal blood treatment by means of an extracorporeal blood treatment device. In order to determine the hemodynamic parameter, the conveying direction of the blood pump 10 is reversed from a “normal” blood flow to a “reversed” blood flow. In practice, it has been found that reversing the conveying direction of the blood pump for a measurement for determining a hemodynamic parameter carries the risk of blood clots reaching the patient, despite the dialyser holding back blood clots. The blood treatment device comprises an input unit 23 for inputting a time interval which can be specified by the user, taking into account the patient-specific and system-specific factors.
    Type: Application
    Filed: June 7, 2018
    Publication date: June 18, 2020
    Applicant: Fresenius Medical Care Deutschland GmbH
    Inventor: Andreas Maierhofer
  • Publication number: 20200139033
    Abstract: The invention relates to an apparatus for extracorporeal blood treatment, comprising a blood treatment unit 1 that comprises at least one compartment 3. The invention further relates to an apparatus 15A, 15B for collecting blood clots for a blood line 5, 7 for supplying blood to or removing blood from a blood treatment unit 1 of an extracorporeal blood treatment apparatus, and to a method for determining a hemodynamic parameter during extracorporeal blood treatment using an extracorporeal blood treatment apparatus. In order to determine the hemodynamic parameter, the conveying direction of the blood pump 10 is reversed from a “normal” blood flow to a “reversed” blood flow. It has been found in practice that, in the event of a reversal in the conveying direction of the blood pump in order to carry out a measurement for determining a hemodynamic parameter, there is a risk of blood clots reaching the patients, although the dialyser traps blood clots.
    Type: Application
    Filed: June 7, 2018
    Publication date: May 7, 2020
    Applicant: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventor: Andreas Maierhofer
  • Patent number: 10639411
    Abstract: The invention relates to a device and a method for detecting the direction of fluid flow through a dialyser 1 which comprises a blood chamber 4, through which blood flows, and a dialysate chamber 3, through which dialysate flows, which are separated from one another by a semi-permeable membrane 2. In addition, the invention relates to an extracorporeal blood treatment device comprising a device for detecting the flow direction. A first aspect of the invention is to measure the clearance in order to detect the flow direction and to compare the measured clearance with a specified limit value, a flow direction in countercurrent flow being concluded if the clearance is greater than the specified limit value. This aspect is based on the finding that in the case of blood treatment in practice with operation of the dialyser in co-current flow, clearance values above a certain limit value can no longer be achieved.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 5, 2020
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventor: Andreas Maierhofer
  • Patent number: 10569001
    Abstract: The invention relates to a method and to a device for determining an optimum dialysate flow Qdopt for an extracorporeal blood treatment and to a blood treatment device comprising a device 18 for determining an optimum dialysate flow Qdopt. The optimum dialysate flow Qdopt is determined on the basis of a relationship describing the dependence of the clearance K on the dialysate flow Qd. The device according to the invention comprises a measurement device 18B for measuring at least one value which is characteristic of the clearance K, a calculation and/or evaluation unit 18A of the device according to the invention being configured in such a way that the clearance K is determined on the basis of the at least one value which is characteristic of the clearance.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: February 25, 2020
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Pascal Kopperschmidt, Andreas Maierhofer, Alfred Gagel, Andreas Wupper, Ulrich Moissl
  • Patent number: 10532140
    Abstract: The invention relates to a system comprising a plurality of medical devices, preferably dialysis devices, which are connected to a common supply system, wherein the system has an evaluation unit which is connected to all devices of the system and which is configured such that values set in the different devices and/or predefined values and/or measured values, which are determined by means of at least one sensor and which relate to corresponding parameters, are compared with at least one expected value for recognizing errors of the supply system and/or of an individual device.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: January 14, 2020
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventor: Andreas Maierhofer
  • Patent number: 10349876
    Abstract: The invention relates to a dialysis machine having the capability of determining a predialytic property in the blood of a dialysis patient which has an extracorporeal blood circuit, a dialyzate circuit, a dialyzer and a processing unit, wherein at least one sensor for determining a property of the dialyzate is arranged in the dialyzate circuit. The processing unit is configured such that temporal evaluation ranges are fixed during an initial phase of the dialysis treatment, in which temporal evaluation ranges all stability criteria from a predefined group are satisfied; and in that only measured values determined by the at least one sensor within these temporal evaluation ranges are used for determining a predialytic property of the patient's blood.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 16, 2019
    Assignee: FRESENIUS MEDICAL CARE DEUTSCHLAND GMBH
    Inventor: Andreas Maierhofer
  • Patent number: 10155077
    Abstract: A dialysis machine has at least one filter for the filtration of dialysis liquid and a device for determining calcification of the dialysis machine. The device has one or more sensors configured and arranged to detect either downstream, or upstream and downstream, of the at least one filter an ion concentration or a parameter representative of the ion concentration or of its change of the dialysis liquid, of a solution serving the decalcification or of another measuring solution. The device for determining the calcification of the dialysis machine has an evaluation or calcification unit configured to determine the calcification of the dialysis machine based on the ion concentration or parameter value detected by the sensor or sensors.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: December 18, 2018
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Andreas Maierhofer, Alfred Gagel, Malte Gross, Michael Koch