Patents by Inventor Andreas Plössl

Andreas Plössl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10475778
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alexander F. Pfeuffer, Norwin von Malm, Stefan Grötsch, Andreas Plößl
  • Publication number: 20190333898
    Abstract: A method of producing an optoelectronic semiconductor component includes A) providing at least three source substrates, wherein each of the source substrates is equipped with a specific type of radiation-emitting semiconductor chips, B) providing a target substrate having a mounting plane configured to mount the semiconductor chips thereto, C) forming platforms on the target substrate, and D) transferring at least some of the semiconductor chips with a wafer-to-wafer process from the source substrates onto the target substrate so that the semiconductor chips transferred to the target substrate maintain their relative position with respect to one another, within the types of semiconductor chips, wherein on the target substrate the semiconductor chips of each type of semiconductor chips have a specific height above the mounting plane due to the platforms so that the semiconductor chips of different types of semiconductor chips have different heights.
    Type: Application
    Filed: January 12, 2018
    Publication date: October 31, 2019
    Inventors: Andreas Plößl, Siegfried Herrmann, Martin Rudolf Behringer, Frank Singer, Thomas Schwarz, Alexander F. Pfeuffer
  • Publication number: 20190245326
    Abstract: A semiconductor laser and a method for producing such a semiconductor laser are disclosed. In an embodiment a semiconductor laser has at least one surface-emitting semiconductor laser chip including a semiconductor layer sequence having at least one active zone configured to generate laser radiation and a light exit surface oriented perpendicular to a growth direction of the semiconductor layer sequence. The laser further includes a diffractive optical element configured to expand and distribute the laser radiation, wherein an optically active structure of the diffractive optical element is made of a material having a refractive index of at least 1.65 regarding a wavelength of maximum intensity of the laser radiation; and a connector engaging at least in places into the optically active structure and completely filling the optically active structure at least in places.
    Type: Application
    Filed: January 9, 2018
    Publication date: August 8, 2019
    Inventors: Hubert Halbritter, Andreas Plößl, Roland Heinrich Enzmann, Martin Rudolf Behringer
  • Patent number: 10361350
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment the component includes a semiconductor chip, a molded body and an electrical through-contact constituting an electrically conductive connection through the molded body. The through-contact and the semiconductor chip are embedded alongside one another and are spaced apart in the molded body. A first contact pad of the through-contact is arranged at an underside of the molded body. A second contact pad of the through-contact is arranged at a top side of the molded body. The second contact pad is electrically conductively connected to the electrical contact of the semiconductor chip. The through-contact is arranged such that a molded body is arranged at least in a section between the first and second contact pads on a straight line between the first and second contact pads.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: July 23, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Ploessl
  • Publication number: 20190221706
    Abstract: An epitaxial conversion element, a method for producing an epitaxial conversion element, a radiation emitting RGB unit and a method for producing a radiation emitting RGB unit are disclosed. In an embodiment an epitaxial conversion element includes a green converting epitaxial layer configured to convert electromagnetic radiation from a blue spectral range into electromagnetic radiation of a green spectral range and a red converting epitaxial layer configured to convert electromagnetic radiation from the blue spectral range into electromagnetic radiation of a red spectral range, wherein the green converting epitaxial layer and the red converting epitaxial layer are based on a phosphide compound semiconductor material, and wherein the green converting epitaxial layer and the red converting epitaxial layer are in different main extension planes which are parallel to each other.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 18, 2019
    Inventors: Alexander Tonkikh, Andreas Plößl
  • Publication number: 20190123251
    Abstract: A light-emitting arrangement is disclosed. In an embodiment a light-emitting arrangement includes a carrier, an electrical contact pad formed on the carrier, an electrically conductive contact film arranged on the contact pad and a light-emitting component having an electrical terminal on a first side, wherein the component is located with the first side on the contact film, wherein the electrical terminal is connected to the contact film in an electrically conductive manner, and wherein the electrical terminal is connected to the contact pad in an electrically conductive manner by way of the electrically conductive contact film.
    Type: Application
    Filed: April 7, 2017
    Publication date: April 25, 2019
    Inventors: Ingo Neudecker, Juergen Moosburger, Andreas Ploessl
  • Patent number: 10242974
    Abstract: A method for producing a plurality of optoelectronic semiconductor components (100) is provided, comprising the following steps: a) providing an auxiliary carrier (2); b) providing a plurality of semiconductor chips (10), wherein each of the semiconductor chips has a carrier body (12) and a semiconductor body (4) arranged on an upper side (22) of the carrier body; c) attaching the plurality of semiconductor chips on the auxiliary carrier, wherein the semiconductor chips are spaced apart from one another in a lateral direction (L) and wherein the semiconductor bodies are facing the auxiliary carrier, as seen from the carrier body; d) forming a scattering layer (18), at least in regions between the semiconductor bodies of adjacent semiconductor chips; e) forming a composite package (20); f) removing the auxiliary carrier (2); and g) individually separating the composite package into a plurality of optoelectronic semiconductor components (100).
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 26, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz Hoeppel, Juergen Moosburger, Andreas Ploessl, Patrick Rode, Peter Nagel, Dominik Scholz
  • Publication number: 20190013450
    Abstract: The method for assembling a carrier comprises a step A), in which a plurality of pigments (100), each with an electronic component (1), is provided. Further, each pigment comprises a meltable solder material (2) directly adjoining a mounting side (10) of the component. At least 63% by volume of each pigment is formed by the solder material. The mounting side of each component has a higher wettability with the molten solder material than a top side (12) and a side surface (11) of the component. In a step B), a carrier (200) with pigment landing areas (201) is provided, the pigment landing areas having higher wettability with the molten solder material of the pigments than the regions laterally adjacent to the pigment landing areas and than the side surfaces and the top sides of the components. In a step C), the pigments are applied to the carrier. In a step D), the pigments are heated so that the solder material melts.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 10, 2019
    Inventor: Andreas PLOESSL
  • Publication number: 20180374996
    Abstract: An assembly includes a carrier including a glass material, including at least one recess, wherein at least one optoelectronic semiconductor component is arranged in the at least one recess of the carrier, and at least one surface of the semiconductor component connects to the carrier via a melted surface including glass.
    Type: Application
    Filed: November 10, 2016
    Publication date: December 27, 2018
    Inventors: Frank Singer, Andreas Ploessl
  • Patent number: 10147696
    Abstract: An electronic device and a method for producing an electronic device are disclosed. In an embodiment the electronic device includes a first component and a second component and a sinter layer connecting the first component to the second component, the sinter layer comprising a first metal, wherein at least one of the components comprises at least one contact layer which is arranged in direct contact with the sinter layer, which comprises a second metal different from the first metal and which is free of gold.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: December 4, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Ploessl
  • Patent number: 10134943
    Abstract: A method for producing a multiplicity of semiconductor chips (13) is provided, comprising the following steps: —providing a wafer (1) comprising a multiplicity of semiconductor bodies (2), wherein separating lines (9) are arranged between the semiconductor bodies (2), —depositing a contact layer (10) on the wafer (1), wherein the material of the contact layer (10) is chosen from the following group: platinum, rhodium, palladium, gold, and the contact layer (10) has a thickness of between 8 nanometers and 250 nanometers, inclusive, —applying the wafer (1) to a film (11), —at least partially severing the wafer (1) in the vertical direction along the separating lines (9) or introducing fracture nuclei (12) into the wafer (1) along the separating lines (9), and —breaking the wafer (1) along the separating lines (9) or expanding the film (11) such that a spatial separation of the semiconductor chips (13) takes place, wherein the contact layer (10) is also separated.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: November 20, 2018
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Bernd Barchmann, Fabian Eigenmann, Andreas Ploessl
  • Publication number: 20180331254
    Abstract: An optoelectronic component, comprising: a structured semiconductor layer, a metallic mirror layer arranged on the semiconductor layer, a diffusion barrier layer arranged on the metallic mirror layer, a passivation layer arranged on the diffusion barrier layer, wherein the semiconductor layer comprises a mesa structure with mesa trenches.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Inventors: Stephan Kaiser, Andreas Ploessl
  • Patent number: 10128405
    Abstract: A method of producing an optoelectronic component, comprising the method steps: A) providing a growth substrate (1); B) growing at least one semiconductor layer (2) epitaxially, to produce an operationally active zone; C) applying a metallic mirror layer (3) to the semiconductor layer (2); D) applying at least one contact layer (8) for electronic contacting of the component; E) detaching the growth substrate (1) from the semiconductor layer (2), so exposing a surface of the semiconductor layer (2); and F) structuring the semiconductor layer (2) by means of an etching method from the side of the surface which was exposed in method step E).
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 13, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stephan Kaiser, Andreas Ploessl
  • Publication number: 20180322824
    Abstract: A module for a video wall includes a first light emitting chip of an image pixel connecting to a first power line by a first electrical terminal, the first light emitting chip connects to a third power line by a second electrical terminal, a second light emitting chip of the image pixel connects to a second power line by the first electrical terminal, the second light emitting chip of the image pixel connects to a fourth power line by the second electrical terminal, the first and/or the second power line are/is a surface metallization, including contact sections, a light emitting chip is arranged on a contact section, at least between contact sections of a first and of a second power line an insulation layer is provided on a carrier, the insulation layer includes openings above the contact sections, and the light emitting chips are arranged in the openings.
    Type: Application
    Filed: November 11, 2016
    Publication date: November 8, 2018
    Inventors: Alexander Martin, Thomas Schwarz, Frank Singer, Andreas Plössl
  • Patent number: 10121775
    Abstract: Described is an optoelectronic semiconductor chip (1) with a built-in bridging element (9, 9A) for overvoltage protection.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: November 6, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Christian Leirer, Berthold Hahn, Karl Engl, Johannes Baur, Siegfried Herrmann, Andreas Ploessl, Simeon Katz, Tobias Meyer, Lorenzo Zini, Markus Maute
  • Publication number: 20180315910
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment the component includes a semiconductor chip, a molded body and an electrical through-contact constituting an electrically conductive connection through the molded body. The through-contact and the semiconductor chip are embedded alongside one another and are spaced apart in the molded body. A first contact pad of the through-contact is arranged at an underside of the molded body. A second contact pad of the through-contact is arranged at a top side of the molded body. The second contact pad is electrically conductively connected to the electrical contact of the semiconductor chip. The through-contact is arranged such that a molded body is arranged at least in a section between the first and second contact pads on a straight line between the first and second contact pads.
    Type: Application
    Filed: June 9, 2016
    Publication date: November 1, 2018
    Applicants: OSRAM Opto Semiconductors GmbH, OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Ploessl
  • Publication number: 20180287008
    Abstract: A method for producing an optoelectronic semiconductor component and an optoelectronic semiconductor component are disclosed. In an embodiment the method include A) providing at least two source substrates, wherein each of the source substrates is equipped with a specific type of radiation-emitting semiconductor chip; B) providing a target substrate having a mounting plane, the mounting plane being configured for mounting the semiconductor chip; and C) transferring at least part of the semiconductor chips with a wafer-to-wafer process from the source substrates onto the target substrate so that the semiconductor chips, within one type, maintain their relative position with respect to one another, so that each type of semiconductor chips arranged on the target substrate has a different height above the mounting plane, wherein the semiconductor chips are at least one of at least partially stacked one above the other or at least partially applied to at least one casting layer.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 4, 2018
    Inventors: Andreas Plößl, Siegfried Herrmann, Martin Rudolf Behringer, Frank Singer, Thomas Schwarz
  • Patent number: 10046408
    Abstract: A device is specified, said device comprising a first component (1), a second component (2), and a connecting component (3) comprising at least a first region (31) and at least a second region (32). The composition of the first region (31) differs from the composition of the second region (32). The connecting component (3) is arranged between the first component (1) and the second component (2). The connecting component (3) comprises different kinds of metals, the first region (31) of the connecting component (3) comprises a first metal (41), and the concentration of the first metal (41) is greater in the first region (31) than the concentration of the first metal (41) in the second region (32).
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 14, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Barbara Behr, Andreas Ploessl, Mathias Wendt, Marcus Zenger
  • Publication number: 20180151548
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed.
    Type: Application
    Filed: May 24, 2016
    Publication date: May 31, 2018
    Inventors: Alexander F. Pfeuffer, Norwin von Malm, Stefan Grötsch, Andreas Plößl
  • Publication number: 20180101016
    Abstract: An optically effective element includes a carrier, a first optically effective structure arranged on a top side of the carrier, and a cover arranged above the first optically effective structure. A method of producing an optically effective element includes providing a carrier, forming a first optically effective structure on a top side of the carrier, and arranging a cover above the top side of the carrier and the first optically effective structure.
    Type: Application
    Filed: September 1, 2017
    Publication date: April 12, 2018
    Inventors: Roland Enzmann, Hubert Halbritter, Markus Arzberger, Andreas Ploessl, Roland Schulz, Georg Rossbach, Bernd Boehm, Frank Singer, Matthias Sabathil