Patents by Inventor Andreas Plössl

Andreas Plössl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180076370
    Abstract: A light-emitting component includes a light-emitting chip and a housing including a plastic body and a reflector, the reflector includes an electrically conductive layer, the light-emitting chip includes a top side and an underside, the underside of the light-emitting chip is arranged on the plastic body, an electrical terminal on the top side of the light-emitting chip electrically conductively connects to the reflector by a bond wire, the underside of the light-emitting chip and the reflector are electrically insulated from one another, a conduction region is provided within the plastic body, thermal conductivity of the conduction region is greater than thermal conductivity of the plastic body, the conduction region adjoins the underside of the light-emitting chip, and the conduction region extends from the side of the plastic body facing the light-emitting chip as far as the side of the plastic body facing away from the light-emitting chip.
    Type: Application
    Filed: April 7, 2016
    Publication date: March 15, 2018
    Inventors: Martin Haushalter, Frank Singer, Thomas Schwarz, Andreas Ploessl
  • Publication number: 20170365736
    Abstract: A method for producing a multiplicity of semiconductor chips (13) is provided, comprising the following steps: providing a wafer (1) comprising a multiplicity of semiconductor bodies (2), wherein separating lines (9) are arranged between the semiconductor bodies (2), depositing a contact layer (10) on the wafer (1), wherein the material of the contact layer (10) is chosen from the following group: platinum, rhodium, palladium, gold, and the contact layer (10) has a thickness of between 8 nanometres and 250 nanometres, inclusive, applying; the wafer (1) to a film (11), at least partially severing the wafer (1) in the vertical direction along the separating lines (9) or introducing fracture nuclei (12) into the wafer (1) along the separating lines (9), and breaking the wafer (1) along the separating lines (9) or expanding the film (11) such that a spatial separation of the semiconductor chips (13) takes place, wherein the contact layer (10) is also separated.
    Type: Application
    Filed: November 30, 2015
    Publication date: December 21, 2017
    Inventors: Bernd BARCHMANN, Fabian EIGENMANN, Andreas PLOESSL
  • Publication number: 20170317067
    Abstract: An optoelectronic semiconductor device and an apparatus with an optoelectronic semiconductor device are disclosed. In an embodiment the optoelectronic semiconductor component has an emission region including a semiconductor layer sequence having a first semiconductor layer, a second semiconductor layer, and an active region arranged between the first semiconductor layer and the second semiconductor layer for generating radiation, and a protection diode region. The semiconductor component has a contact for electrically contacting the semiconductor component externally. The contact has a first contact region that is connected to the emission region in an electrically conductive manner. The contact has further a second contact region that is spaced apart from the first contact region and connected to the protection diode region in an electrically conductive manner. The first contact region and the second contact region can be electrically contacted externally by a mutual end of a connecting line.
    Type: Application
    Filed: October 21, 2015
    Publication date: November 2, 2017
    Inventors: Juergen Moosburger, Andreas Ploessl
  • Publication number: 20170271295
    Abstract: An electronic device and a method for producing an electronic device are disclosed. In an embodiment the electronic device includes a first component and a second component and a sinter layer connecting the first component to the second component, the sinter layer comprising a first metal, wherein at least one of the components comprises at least one contact layer which is arranged in direct contact with the sinter layer, which comprises a second metal different from the first metal and which is free of gold.
    Type: Application
    Filed: September 17, 2015
    Publication date: September 21, 2017
    Applicants: OSRAM Opto Semiconductors GmbH, OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Ploessl
  • Publication number: 20170271438
    Abstract: A method of producing a plurality of semiconductor chips includes a) providing a carrier substrate having a first major face and a second major face opposite the first major face; b) forming a diode structure between the first major face and the second major face, the diode structure electrically insulating the first major face from the second major face at least with regard to one polarity of an electrical voltage; c) arranging a semiconductor layer sequence on the first major face of the carrier substrate; and d) singulating the carrier substrate with the semiconductor layer sequence into a plurality of semiconductor chips.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventors: Ewald Karl Michael Günther, Andreas Plössl, Heribert Zull, Thomas Veit, Mathias Kämpf, Jens Dennemarck, Bernd Böhm, Korbinian Perzlmaier
  • Patent number: 9721940
    Abstract: A radiation-emitting semiconductor chip having a semiconductor body including a semi-conductor layer sequence having an active region that generates radiation, a first semiconductor layer of a first conductor, and a second semiconductor layer of a second conductor different from the first conductor, and having a carrier on which the semiconductor body is arranged, wherein a pn junction is formed in the carrier, the carrier has a first contact and a second contact on a rear side facing away from the semiconductor body, and the active area and the pn junction connect to one another in antiparallel in relation to the forward-bias direction by the first contact and the second contact.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 1, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Plössl, Heribert Zull
  • Patent number: 9634155
    Abstract: The invention relates to a method for producing an electrical terminal support for an optoelectronic semiconductor body, comprising the following steps: providing a carrier assembly (1), which comprises a carrier body (11), an intermediate layer (12) arranged on an outer surface (111) of the carrier body (11), and a use layer (13) arranged on the intermediate layer (12); introducing at least two openings (4), which are mutually spaced in the lateral direction (L), in the use layer (13) via an outer surface (131) of the use layer (13), wherein the openings extend completely through the use layer (13) in the vertical direction (V); electrically insulating lateral surfaces (41) of the openings (4) and of the outer face (131) of the use layer (13); arranging electrically conductive material (6) at least in the openings (4), wherein after completion of the terminal carrier (100), the electrically conductive material (6) has an interruption (U) in the progression thereof along the outer surface (131) of the use lay
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: April 25, 2017
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Andreas Plössl
  • Publication number: 20170005079
    Abstract: A method for producing a plurality of optoelectronic semiconductor components (100) is provided, comprising the following steps: a) providing an auxiliary carrier (2); b) providing a plurality of semiconductor chips (10), wherein each of the semiconductor chips has a carrier body (12) and a semiconductor body (4) arranged on an upper side (22) of the carrier body; c) attaching the plurality of semiconductor chips on the auxiliary carrier, wherein the semiconductor chips are spaced apart from one another in a lateral direction (L) and wherein the semiconductor bodies are facing the auxiliary carrier, as seen from the carrier body; d) forming a scattering layer (18), at least in regions between the semiconductor bodies of adjacent semiconductor chips; e) forming a composite package (20); f) removing the auxiliary carrier (2); and g) individually separating the composite package into a plurality of optoelectronic semiconductor components (100).
    Type: Application
    Filed: January 21, 2015
    Publication date: January 5, 2017
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz HOEPPEL, Juergen MOOSBURGER, Andreas PLOESSL, Patrick RODE, Peter NAGEL, Dominik SCHOLZ
  • Publication number: 20160346857
    Abstract: A device is specified, said device comprising a first component (1), a second component (2), and a connecting component (3) comprising at least a first region (31) and at least a second region (32). The composition of the first region (31) differs from the composition of the second region (32). The connecting component (3) is arranged between the first component (1) and the second component (2). The connecting component (3) comprises different kinds of metals, the first region (31) of the connecting component (3) comprises a first metal (41), and the concentration of the first metal (41) is greater in the first region (31) than the concentration of the first metal (41) in the second region (32).
    Type: Application
    Filed: May 28, 2015
    Publication date: December 1, 2016
    Inventors: Barbara Behr, Andreas Ploessl, Mathias Wendt, Marcus Zenger
  • Publication number: 20160300829
    Abstract: Described is an optoelectronic semiconductor chip (1) with a built-in bridging element (9, 9A) for overvoltage protection.
    Type: Application
    Filed: November 7, 2014
    Publication date: October 13, 2016
    Inventors: Christian LEIRER, Berthold HAHN, Karl ENGL, Johannes BAUR, Siegfried HERRMANN, Andreas PLOESSL, Simeon KATZ, Tobias MEYER, Lorenzo ZINI, Markus MAUTE
  • Publication number: 20160247966
    Abstract: The invention relates to a light-emitting semiconductor component, comprising—a first semiconductor body (1), which comprises an active zone (11) in which during the operation of the light-emitting semiconductor component electromagnetic radiation is generated, at least some of which leaves the first semiconductor body (1) through a radiation exit surface (1a), and—a second semiconductor body (2), which is suitable for converting the electromagnetic radiation into converted electromagnetic radiation having a longer wavelength, wherein—the first semiconductor body (1) and the second semiconductor body (2) are produced separately from each other,—the second semiconductor body (2) is electrically inactive, and—the second semiconductor body (2) is in direct contact with the radiation exit surface (1a) and is attached there to the first semiconductor body (1) without connecting means.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Matthias SABATHIL, Andreas PLÖßL, Hans-Jürgen LUGAUER, Alexander LINKOV, Patrick RODE
  • Publication number: 20160218097
    Abstract: A radiation-emitting semiconductor chip having a semiconductor body including a semi-conductor layer sequence having an active region that generates radiation, a first semiconductor layer of a first conductor, and a second semiconductor layer of a second conductor different from the first conductor, and having a carrier on which the semiconductor body is arranged, wherein a pn junction is formed in the carrier, the carrier has a first contact and a second contact on a rear side facing away from the semiconductor body, and the active area and the pn junction connect to one another in antiparallel in relation to the forward-bias direction by the first contact and the second contact.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 28, 2016
    Inventors: Andreas PLÖSSL, Heribert ZULL
  • Patent number: 9368698
    Abstract: A converter plate adapted to be attached to a radiation-emitting semiconductor chip, the converter plate containing a base material made of glass in which a plurality of openings is arranged, in each of which a converter material is installed.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: June 14, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Plössl
  • Patent number: 9324920
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip and an optical element. A connecting layer includes a transparent oxide arranged between the semiconductor chip and the optical element. The connecting layer directly adjoins the semiconductor chip and the optical element and fixes the optical element on the semiconductor chip. A method for fabricating an optoelectronic semiconductor component is furthermore specified.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: April 26, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Sabathil, Andreas Ploessl, Norwin von Malm, Alexander Linkov, Lutz Hoeppel, Christopher Koelper
  • Publication number: 20160111615
    Abstract: An optoelectronic semiconductor chip includes a semiconductor body that has a semiconductor layer sequence and at least one opening that extends through a second semiconductor layer into a first semiconductor layer. The chip also includes a support, which includes at least one recess, and a metallic connecting layer between the semiconductor body and the support. The metallic connecting layer includes a first region and a second region. The first region is connected to the first semiconductor layer in an electrically conductive manner through the opening and the second region is connected to the second semiconductor layer in an electrically conductive manner. A first contact is connected to the first region in an electrically conductive manner through the recess or a second contact is connected to the second region in an electrically conductive manner through the recess.
    Type: Application
    Filed: May 28, 2014
    Publication date: April 21, 2016
    Inventors: Norwin von Malm, Andreas Plößl
  • Publication number: 20160099390
    Abstract: An optoelectronic semiconductor component includes a luminescent diode chip including a radiation passage face through which primary electromagnetic radiation leaves the luminescent diode chip when in operation, and a filter element that covers the radiation passage face of the luminescent diode chip at least in places, wherein the filter element prevents passage of some of the primary electromagnetic radiation in the UV range, and the filter element consists of a II-VI compound semiconductor material.
    Type: Application
    Filed: June 2, 2014
    Publication date: April 7, 2016
    Inventors: Ivar Tångring, Andreas Plößl
  • Publication number: 20160027759
    Abstract: A method is provided for connecting parts to be joined. A first layer sequence is applied to a first part to be joined. The first layer sequence contains silver. A second layer sequence is applied to a second part to be joined. The second layer sequence contains indium and bismuth. The first layer sequence and the second layer sequence are pressed together at their end faces respectively remote from the first part to be joined and the second part to be joined through application of a joining pressure at a joining temperature which amounts to at most 120° C. for a predetermined joining time. The first layer sequence and the second layer sequence fuse together to form a bonding layer which directly adjoins the first part to be joined and the second part to be joined and the melting temperature of which amounts to at least 260° C.
    Type: Application
    Filed: March 24, 2014
    Publication date: January 28, 2016
    Inventor: Andreas Plößl
  • Publication number: 20160027959
    Abstract: In at least one embodiment, a method is designed to produce optoelectronic semiconductor chips. A carrier assembly, which is a sapphire wafer, is produced. A semiconductor layer sequence is applied to the carrier assembly. The carrier assembly and the semiconductor layer sequence are divided into the individual semiconductor chips. The dividing is implemented by producing a multiplicity of selectively etchable material modifications in the carrier assembly in separation region(s) by focused, pulsed laser radiation. The laser radiation has a wavelength at which the carrier assembly is transparent. The dividing includes wet chemically etching the material modifications, such that the carrier assembly is singulated into individual carriers for the semiconductor chips solely by the wet chemical etching or in combination with a further material removal method.
    Type: Application
    Filed: March 19, 2014
    Publication date: January 28, 2016
    Inventor: Andreas Plößl
  • Publication number: 20150345727
    Abstract: An optoelectronic device and a method for producing an optoelectronic device are disclosed. An embodiment of an optoelectronic device includes a carrier, an electrically conductive layer arranged on the carrier, at least one semiconductor chip comprising an active layer for generating electromagnetic radiation, wherein the semiconductor chip is electrically conductively and mechanically connected with the carrier via the electrically conductive layer. The device further comprises a holder, wherein a surface of the carrier remote from the semiconductor chip is arranged on the holder, wherein the carrier is mechanically connected with the holder by at least one fastening element and is fastened to the holder, wherein the fastening element passes completely through the carrier, and wherein the semiconductor chip is electrically conductively connected to the holder by the fastening element.
    Type: Application
    Filed: December 17, 2013
    Publication date: December 3, 2015
    Inventors: Siegfried Herrmann, Walter Wegleiter, Andreas Plößl
  • Patent number: 9165816
    Abstract: A method relates to separating a component composite into a plurality of component regions, wherein the component composite is provided having a semiconductor layer sequence comprising a region for generating or for receiving electromagnetic radiation. The component composite is mounted on a rigid subcarrier. The component composite is separated into the plurality of component regions, wherein one semiconductor body is produced from the semiconductor layer sequence for each component region. The component regions are removed from the subcarrier.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 20, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Heribert Zull, Korbinian Perzlmaier, Andreas Ploessl, Thomas Veit, Mathias Kaempf, Jens Dennemarck, Bernd Boehm