Patents by Inventor Andreas Ploessl

Andreas Ploessl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11892651
    Abstract: An optoelectronic component includes an optoelectronic semiconductor chip configured to emit electromagnetic radiation; an optically effective element arranged such that electromagnetic radiation emitted by the optoelectronic semiconductor chip passes through the optically effective element; and a housing, wherein the optoelectronic semiconductor chip is arranged in a cavity of the housing, the optically effective element includes a carrier, a first optically effective structure arranged on a top side of the carrier, and a cover arranged above the first optically effective structure.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: February 6, 2024
    Assignee: OSRAM OLED GmbH
    Inventors: Roland Enzmann, Hubert Halbritter, Markus Arzberger, Andreas Ploessl, Roland Schulz, Georg Rossbach, Bernd Boehm, Frank Singer, Matthias Sabathil
  • Patent number: 11784062
    Abstract: The invention relates to a method for producing optoelectronic components. The invention comprises: provision of a metal substrate, the substrate having a front side and a rear side opposite the front side; front-side removal of substrate material such that the substrate comprises substrate sections protruding in the region of the front side and recesses arranged there between; formation of a plastic body adjacent to substrate sections; arrangement of optoelectronic semiconductor chips on substrate sections; rear-side removal of substrate material in the region of the recesses, such that the substrate is structured into separate substrate sections; and performance of a separation process. The plastic body is divided into separate substrate sections and individual optoelectronic components with at least one optoelectronic semiconductor chip are formed. The invention also relates to an optoelectronic component.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: October 10, 2023
    Assignee: Osram OLED GmbH
    Inventors: Thomas Schwarz, Andreas Plössl, Jörg Sorg
  • Publication number: 20220342625
    Abstract: A display module includes a carrier with a front face and a rear face. The display module also includes a pixel array. The pixel array includes a plurality of electrically drivable pixels on the front face. In operation, electromagnetic radiation is emitted via each driven pixel. The display module further includes a wiring layer on the front face, via which the pixels are electrically connected to one another. The display module additionally includes a receiving unit on the front face. The receiving unit is electrically connected with the wiring layer. The receiving unit is configured to wirelessly receive a supply energy for the operation of the display module.
    Type: Application
    Filed: August 10, 2020
    Publication date: October 27, 2022
    Inventors: Thomas SCHWARZ, Andreas PLÖSSL, Horst VARGA, Ralph Peter BERTRAM
  • Patent number: 11404402
    Abstract: A component assembly includes an intermediate carrier, a plurality of components and a plurality of anchoring elements. The components have at least two electrical devices and an insulating layer. At least one of the electrical devices is an optoelectronic semiconductor chip. The insulating layer is between the electrical devices of a same component. The at least two electrical devices of the same component are arranged next to one another and enclosed laterally by the insulating layer. The at least two electrical devices and the insulating layer of the same component are integral parts of a self-supporting and mechanically stable unit. The self-supporting and mechanically stable unit and the anchoring elements fix the positions of the components on the intermediate carrier. The components that are self-supporting and mechanically stable units are detachable from the intermediate carrier, and the anchoring elements release the components under mechanical load when the latter are removed.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 2, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Tilman Rügheimer, Thomas Schwarz, Lutz Höppel, Andreas Plößl, Alexander F. Pfeuffer
  • Publication number: 20220223570
    Abstract: In an embodiment an arrangement includes a plurality of optoelectronic semiconductor components arranged in a common plane, wherein each semiconductor component is laterally delimited by side faces, and wherein each semiconductor component includes a semiconductor body having an active region configured to emit electromagnetic radiation, a radiation outlet side configured to couple out the electromagnetic radiation, a rear face opposite to the radiation outlet side, and a contact structure arranged on the rear face, an output element, an electrically insulating insulation layer and an electrical connection structure, wherein the insulation layer is arranged between side faces of adjacent semiconductor components, wherein the output element is arranged at the radiation outlet sides of the semiconductor components, wherein the electrical connection structure is electrically conductively connected with the contact structure, and wherein the connection structure includes an adhesive layer, a growth layer and a co
    Type: Application
    Filed: May 27, 2020
    Publication date: July 14, 2022
    Inventors: Thomas Schwarz, Sebastian Wittmann, Andreas Plößl
  • Publication number: 20220208715
    Abstract: In an embodiment a method includes providing a semiconductor chip, applying a solder metal layer sequence on the semiconductor chip, providing a substrate, applying a metallization layer sequence on the substrate, applying the semiconductor chip on the substrate via the solder metal layer sequence and the metallization layer sequence and heating the applied semiconductor chip on the substrate for fastening the semiconductor chip on the substrate, wherein the solder metal layer sequence includes a first metallic layer including an indium-tin alloy, a barrier layer arranged above the first metallic layer, and a second metallic layer having gold arranged between the barrier layer and the semiconductor chip, and wherein the indium-tin alloy has the following formula: InxSn1-x with 0.04?x?0.2.
    Type: Application
    Filed: March 21, 2022
    Publication date: June 30, 2022
    Inventors: Klaus Mueller, Andreas Ploessl, Mathias Wendt
  • Patent number: 11315898
    Abstract: A method for fastening a semiconductor chip on a substrate and an electronic component are disclosed. In an embodiment a method includes providing a semiconductor chip, applying a solder metal layer sequence on the semiconductor chip, providing a substrate, applying a metallization layer sequence on the substrate, applying the semiconductor chip on the substrate via the solder metal layer sequence and the metallization layer sequence and heating the applied semiconductor chip on the substrate for fastening the semiconductor chip on the substrate. The solder metal layer may include a first metallic layer comprising an indium-tin alloy, a barrier layer arranged above the first metallic layer and a second metallic layer comprising gold arranged between the barrier layer and the semiconductor chip, wherein an amount of substance of the gold in the second metallic layer is greater than an amount of substance of tin in the first metallic layer.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: April 26, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Klaus Mueller, Andreas Ploessl, Mathias Wendt
  • Patent number: 11296265
    Abstract: A radiation-emitting semiconductor device and a fabric are disclosed. In an embodiment, a radiation-emitting semiconductor device includes a semiconductor layer sequence having an active region configured to generate radiation and at least one carrier on which the semiconductor layer sequence is arranged, wherein the at least one carrier has at least one anchoring structure on a carrier underside facing away from the semiconductor layer sequence, wherein the at least one anchoring structure includes electrical contact points for making electrical contact with the semiconductor layer sequence, and wherein the at least one anchoring structure is configured to receive at least one thread for fastening the semiconductor device to a fabric and for electrical contacting the at least one thread.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: April 5, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Martin Rudolf Behringer, Alexander F. Pfeuffer, Andreas Plößl, Georg Bogner, Berthold Hahn, Frank Singer
  • Publication number: 20220077367
    Abstract: A method of producing an optoelectronic component includes providing a semiconductor wafer with a functional semiconductor layer that has electronic control elements, and a growth layer; generating a plurality of recesses in the semiconductor wafer exposing the growth layer in places; and epitaxially growing a plurality of semiconductor layer stacks on the exposed growth layer, wherein a surface of the exposed growth layer is used as a growth surface for the semiconductor layer stacks, and the growth surface is inclined to a main extension plane of the semiconductor wafer.
    Type: Application
    Filed: December 20, 2019
    Publication date: March 10, 2022
    Inventor: Andreas Plößl
  • Publication number: 20220077067
    Abstract: In an embodiment a component includes a semiconductor chip, a connection member and a carrier, wherein the semiconductor chip is mechanically and electrically connected to the carrier via the connection member, wherein the connection member includes a contiguous metallic connecting layer and a plurality of metallic through-vias extending vertically through the connecting layer and being laterally spaced from the connecting layer by insulating regions, wherein the insulating regions are filled with a gaseous medium and are hermetically sealed, and wherein the gaseous medium contains an insulating gas having a higher breakdown field strength compared to nitrogen, or wherein a gas pressure is less than 1 mbar in the hermetically sealed insulating regions.
    Type: Application
    Filed: January 10, 2020
    Publication date: March 10, 2022
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Plößl
  • Patent number: 11264550
    Abstract: A radiation-emitting semiconductor device and a fabric are disclosed. In an embodiment, a radiation-emitting semiconductor device includes a semiconductor layer sequence having an active region configured to generate radiation and at least one carrier on which the semiconductor layer sequence is arranged, wherein the at least one carrier has at least one anchoring structure on a carrier underside facing away from the semiconductor layer sequence, wherein the at least one anchoring structure includes electrical contact points for making electrical contact with the semiconductor layer sequence, and wherein the at least one anchoring structure is configured to receive at least one thread for fastening the semiconductor device to a fabric and for electrical contacting the at least one thread.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 1, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Martin Rudolf Behringer, Alexander F. Pfeuffer, Andreas Plößl, Georg Bogner, Berthold Hahn, Frank Singer
  • Patent number: 11222992
    Abstract: An optoelectronic component, comprising: a structured semiconductor layer, a metallic mirror layer arranged on the semiconductor layer, a diffusion barrier layer arranged on the metallic mirror layer, a passivation layer arranged on the diffusion barrier layer, wherein the semiconductor layer comprises a mesa structure with mesa trenches. The mesa trenches taper from the surface of the semiconductor layer towards the mirror layer.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: January 11, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Stephan Kaiser, Andreas Ploessl
  • Publication number: 20210399518
    Abstract: In one embodiment, the method serves for producing semiconductor lasers and includes the following steps in the order indicated: A) applying a multiplicity of edge emitting laser diodes on a mounting substrate, B) applying an encapsulation element, such that the laser diodes are applied in each case in a cavity between the mounting substrate and the associated encapsulation element, C) operating the laser diodes and determining emission directions of the laser diodes, D) producing material damage in partial regions of the encapsulation element, wherein the partial regions are uniquely assigned to the laser diodes, E) collectively removing material of the encapsulation element, said material being affected by the material damage, with the result that individual optical surfaces for beam shaping arise for the laser diodes in the partial regions, and F) singulating to form the semiconductor lasers.
    Type: Application
    Filed: November 11, 2019
    Publication date: December 23, 2021
    Inventors: Thomas SCHWARZ, Andreas PLÖßL, Jörg Erich SORG, Frank SINGER
  • Publication number: 20210384062
    Abstract: In an embodiment a transfer tool includes an adhesive stamp having an adhesive surface configured to pick up a semiconductor chip and a device configured to adjust a surface area of the adhesive surface, wherein the adhesive stamp is deformable, wherein the adhesive surface is formed by a part of an outer surface of the adhesive stamp, wherein the surface area of the adhesive surface is adjustable by deformation of the adhesive stamp, and wherein the adhesive surface is free of interruptions.
    Type: Application
    Filed: October 24, 2019
    Publication date: December 9, 2021
    Inventor: Andreas Plößl
  • Patent number: 11183621
    Abstract: A component may include a semiconductor chip, a buffer layer, a connecting layer, and a metal carrier. The semiconductor chip may include a substrate and a semiconductor body arranged thereon. The metal carrier may have a thermal expansion coefficient at least 1.5 times as great as a thermal expansion coefficient of the substrate or of the semiconductor chip. The chip may be fastened on the metal carrier by the connecting layer, and the buffer layer may have a yield stress ranging from 10 MPa. The buffer layer may have a thickness ranging from 2 um to 10 um and adjoin the chip. The substrate and the metal carrier may have a higher yield strength than the buffer layer.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: November 23, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Paola Altieri-Weimar, Ingo Neudecker, Andreas Ploessl, Marcus Zenger
  • Patent number: 11127890
    Abstract: The method for assembling a carrier comprises a step A), in which a plurality of pigments (100), each with an electronic component (1), is provided. Further, each pigment comprises a meltable solder material (2) directly adjoining a mounting side (10) of the component. At least 63% by volume of each pigment is formed by the solder material. The mounting side of each component has a higher wettability with the molten solder material than a top side (12) and a side surface (11) of the component. In a step B), a carrier (200) with pigment landing areas (201) is provided, the pigment landing areas having higher wettability with the molten solder material of the pigments than the regions laterally adjacent to the pigment landing areas and than the side surfaces and the top sides of the components. In a step C), the pigments are applied to the carrier. In a step D), the pigments are heated so that the solder material melts.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 21, 2021
    Assignee: OSRAM OLED GmbH
    Inventor: Andreas Ploessl
  • Patent number: 11081620
    Abstract: A method of producing a semiconductor component includes applying an auxiliary carrier at a first side of a semiconductor body, the auxiliary carrier having a first lateral coefficient of thermal expansion, and applying a connection carrier at a second side of the semiconductor body facing away from the auxiliary carrier, the connection carrier having a second lateral coefficient of thermal expansion, wherein the semiconductor body is grown on a growth substrate different from the auxiliary carrier, the first and the second lateral coefficient of thermal expansion differ by at most 50%, and the growth substrate is removed prior to application of the auxiliary carrier.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 3, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Andreas Plössl, Norwin von Malm, Dominik Scholz, Christoph Schwarzmaier, Martin Rudolf Behringer, Alexander F. Pfeuffer
  • Publication number: 20210223559
    Abstract: An optoelectronic component includes an optoelectronic semiconductor chip configured to emit electromagnetic radiation; an optically effective element arranged such that electromagnetic radiation emitted by the optoelectronic semiconductor chip passes through the optically effective element; and a housing, wherein the optoelectronic semiconductor chip is arranged in a cavity of the housing, the optically effective element includes a carrier, a first optically effective structure arranged on a top side of the carrier, and a cover arranged above the first optically effective structure.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 22, 2021
    Inventors: Roland Enzmann, Hubert Halbritter, Markus Arzberger, Andreas Ploessl, Roland Schulz, Georg Rossbach, Bernd Boehm, Frank Singer, Matthias Sabathil
  • Patent number: 11069663
    Abstract: A method of producing an optoelectronic semiconductor component includes A) providing at least three source substrates, wherein each of the source substrates is equipped with a specific type of radiation-emitting semiconductor chips, B) providing a target substrate having a mounting plane configured to mount the semiconductor chips thereto, C) forming platforms on the target substrate, and D) transferring at least some of the semiconductor chips with a wafer-to-wafer process from the source substrates onto the target substrate so that the semiconductor chips transferred to the target substrate maintain their relative position with respect to one another, within the types of semiconductor chips, wherein on the target substrate the semiconductor chips of each type of semiconductor chips have a specific height above the mounting plane due to the platforms so that the semiconductor chips of different types of semiconductor chips have different heights.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: July 20, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Andreas Plößl, Siegfried Herrmann, Martin Rudolf Behringer, Frank Singer, Thomas Schwarz, Alexander F. Pfeuffer
  • Publication number: 20210183834
    Abstract: A component assembly includes an intermediate carrier, a plurality of components and a plurality of anchoring elements. The components have at least two electrical devices and an insulating layer. At least one of the electrical devices is an optoelectronic semiconductor chip. The insulating layer is between the electrical devices of a same component. The at least two electrical devices of the same component are arranged next to one another and enclosed laterally by the insulating layer. The at least two electrical devices and the insulating layer of the same component are integral parts of a self-supporting and mechanically stable unit. The self-supporting and mechanically stable unit and the anchoring elements fix the positions of the components on the intermediate carrier. The components that are self-supporting and mechanically stable units are detachable from the intermediate carrier, and the anchoring elements release the components under mechanical load when the latter are removed.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 17, 2021
    Inventors: Tilman RÜGHEIMER, Thomas SCHWARZ, Lutz HÖPPEL, Andreas PLÖßL, Alexander F. PFEUFFER