Patents by Inventor Andreas Ploessl

Andreas Ploessl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10242974
    Abstract: A method for producing a plurality of optoelectronic semiconductor components (100) is provided, comprising the following steps: a) providing an auxiliary carrier (2); b) providing a plurality of semiconductor chips (10), wherein each of the semiconductor chips has a carrier body (12) and a semiconductor body (4) arranged on an upper side (22) of the carrier body; c) attaching the plurality of semiconductor chips on the auxiliary carrier, wherein the semiconductor chips are spaced apart from one another in a lateral direction (L) and wherein the semiconductor bodies are facing the auxiliary carrier, as seen from the carrier body; d) forming a scattering layer (18), at least in regions between the semiconductor bodies of adjacent semiconductor chips; e) forming a composite package (20); f) removing the auxiliary carrier (2); and g) individually separating the composite package into a plurality of optoelectronic semiconductor components (100).
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 26, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz Hoeppel, Juergen Moosburger, Andreas Ploessl, Patrick Rode, Peter Nagel, Dominik Scholz
  • Publication number: 20190013450
    Abstract: The method for assembling a carrier comprises a step A), in which a plurality of pigments (100), each with an electronic component (1), is provided. Further, each pigment comprises a meltable solder material (2) directly adjoining a mounting side (10) of the component. At least 63% by volume of each pigment is formed by the solder material. The mounting side of each component has a higher wettability with the molten solder material than a top side (12) and a side surface (11) of the component. In a step B), a carrier (200) with pigment landing areas (201) is provided, the pigment landing areas having higher wettability with the molten solder material of the pigments than the regions laterally adjacent to the pigment landing areas and than the side surfaces and the top sides of the components. In a step C), the pigments are applied to the carrier. In a step D), the pigments are heated so that the solder material melts.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 10, 2019
    Inventor: Andreas PLOESSL
  • Publication number: 20180374996
    Abstract: An assembly includes a carrier including a glass material, including at least one recess, wherein at least one optoelectronic semiconductor component is arranged in the at least one recess of the carrier, and at least one surface of the semiconductor component connects to the carrier via a melted surface including glass.
    Type: Application
    Filed: November 10, 2016
    Publication date: December 27, 2018
    Inventors: Frank Singer, Andreas Ploessl
  • Patent number: 10147696
    Abstract: An electronic device and a method for producing an electronic device are disclosed. In an embodiment the electronic device includes a first component and a second component and a sinter layer connecting the first component to the second component, the sinter layer comprising a first metal, wherein at least one of the components comprises at least one contact layer which is arranged in direct contact with the sinter layer, which comprises a second metal different from the first metal and which is free of gold.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: December 4, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Ploessl
  • Patent number: 10134943
    Abstract: A method for producing a multiplicity of semiconductor chips (13) is provided, comprising the following steps: —providing a wafer (1) comprising a multiplicity of semiconductor bodies (2), wherein separating lines (9) are arranged between the semiconductor bodies (2), —depositing a contact layer (10) on the wafer (1), wherein the material of the contact layer (10) is chosen from the following group: platinum, rhodium, palladium, gold, and the contact layer (10) has a thickness of between 8 nanometers and 250 nanometers, inclusive, —applying the wafer (1) to a film (11), —at least partially severing the wafer (1) in the vertical direction along the separating lines (9) or introducing fracture nuclei (12) into the wafer (1) along the separating lines (9), and —breaking the wafer (1) along the separating lines (9) or expanding the film (11) such that a spatial separation of the semiconductor chips (13) takes place, wherein the contact layer (10) is also separated.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: November 20, 2018
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Bernd Barchmann, Fabian Eigenmann, Andreas Ploessl
  • Publication number: 20180331254
    Abstract: An optoelectronic component, comprising: a structured semiconductor layer, a metallic mirror layer arranged on the semiconductor layer, a diffusion barrier layer arranged on the metallic mirror layer, a passivation layer arranged on the diffusion barrier layer, wherein the semiconductor layer comprises a mesa structure with mesa trenches.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Inventors: Stephan Kaiser, Andreas Ploessl
  • Patent number: 10128405
    Abstract: A method of producing an optoelectronic component, comprising the method steps: A) providing a growth substrate (1); B) growing at least one semiconductor layer (2) epitaxially, to produce an operationally active zone; C) applying a metallic mirror layer (3) to the semiconductor layer (2); D) applying at least one contact layer (8) for electronic contacting of the component; E) detaching the growth substrate (1) from the semiconductor layer (2), so exposing a surface of the semiconductor layer (2); and F) structuring the semiconductor layer (2) by means of an etching method from the side of the surface which was exposed in method step E).
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 13, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stephan Kaiser, Andreas Ploessl
  • Publication number: 20180322824
    Abstract: A module for a video wall includes a first light emitting chip of an image pixel connecting to a first power line by a first electrical terminal, the first light emitting chip connects to a third power line by a second electrical terminal, a second light emitting chip of the image pixel connects to a second power line by the first electrical terminal, the second light emitting chip of the image pixel connects to a fourth power line by the second electrical terminal, the first and/or the second power line are/is a surface metallization, including contact sections, a light emitting chip is arranged on a contact section, at least between contact sections of a first and of a second power line an insulation layer is provided on a carrier, the insulation layer includes openings above the contact sections, and the light emitting chips are arranged in the openings.
    Type: Application
    Filed: November 11, 2016
    Publication date: November 8, 2018
    Inventors: Alexander Martin, Thomas Schwarz, Frank Singer, Andreas Plössl
  • Patent number: 10121775
    Abstract: Described is an optoelectronic semiconductor chip (1) with a built-in bridging element (9, 9A) for overvoltage protection.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: November 6, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Christian Leirer, Berthold Hahn, Karl Engl, Johannes Baur, Siegfried Herrmann, Andreas Ploessl, Simeon Katz, Tobias Meyer, Lorenzo Zini, Markus Maute
  • Publication number: 20180315910
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment the component includes a semiconductor chip, a molded body and an electrical through-contact constituting an electrically conductive connection through the molded body. The through-contact and the semiconductor chip are embedded alongside one another and are spaced apart in the molded body. A first contact pad of the through-contact is arranged at an underside of the molded body. A second contact pad of the through-contact is arranged at a top side of the molded body. The second contact pad is electrically conductively connected to the electrical contact of the semiconductor chip. The through-contact is arranged such that a molded body is arranged at least in a section between the first and second contact pads on a straight line between the first and second contact pads.
    Type: Application
    Filed: June 9, 2016
    Publication date: November 1, 2018
    Applicants: OSRAM Opto Semiconductors GmbH, OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Ploessl
  • Publication number: 20180287008
    Abstract: A method for producing an optoelectronic semiconductor component and an optoelectronic semiconductor component are disclosed. In an embodiment the method include A) providing at least two source substrates, wherein each of the source substrates is equipped with a specific type of radiation-emitting semiconductor chip; B) providing a target substrate having a mounting plane, the mounting plane being configured for mounting the semiconductor chip; and C) transferring at least part of the semiconductor chips with a wafer-to-wafer process from the source substrates onto the target substrate so that the semiconductor chips, within one type, maintain their relative position with respect to one another, so that each type of semiconductor chips arranged on the target substrate has a different height above the mounting plane, wherein the semiconductor chips are at least one of at least partially stacked one above the other or at least partially applied to at least one casting layer.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 4, 2018
    Inventors: Andreas Plößl, Siegfried Herrmann, Martin Rudolf Behringer, Frank Singer, Thomas Schwarz
  • Patent number: 10046408
    Abstract: A device is specified, said device comprising a first component (1), a second component (2), and a connecting component (3) comprising at least a first region (31) and at least a second region (32). The composition of the first region (31) differs from the composition of the second region (32). The connecting component (3) is arranged between the first component (1) and the second component (2). The connecting component (3) comprises different kinds of metals, the first region (31) of the connecting component (3) comprises a first metal (41), and the concentration of the first metal (41) is greater in the first region (31) than the concentration of the first metal (41) in the second region (32).
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 14, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Barbara Behr, Andreas Ploessl, Mathias Wendt, Marcus Zenger
  • Publication number: 20180151548
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed.
    Type: Application
    Filed: May 24, 2016
    Publication date: May 31, 2018
    Inventors: Alexander F. Pfeuffer, Norwin von Malm, Stefan Grötsch, Andreas Plößl
  • Publication number: 20180101016
    Abstract: An optically effective element includes a carrier, a first optically effective structure arranged on a top side of the carrier, and a cover arranged above the first optically effective structure. A method of producing an optically effective element includes providing a carrier, forming a first optically effective structure on a top side of the carrier, and arranging a cover above the top side of the carrier and the first optically effective structure.
    Type: Application
    Filed: September 1, 2017
    Publication date: April 12, 2018
    Inventors: Roland Enzmann, Hubert Halbritter, Markus Arzberger, Andreas Ploessl, Roland Schulz, Georg Rossbach, Bernd Boehm, Frank Singer, Matthias Sabathil
  • Publication number: 20180076370
    Abstract: A light-emitting component includes a light-emitting chip and a housing including a plastic body and a reflector, the reflector includes an electrically conductive layer, the light-emitting chip includes a top side and an underside, the underside of the light-emitting chip is arranged on the plastic body, an electrical terminal on the top side of the light-emitting chip electrically conductively connects to the reflector by a bond wire, the underside of the light-emitting chip and the reflector are electrically insulated from one another, a conduction region is provided within the plastic body, thermal conductivity of the conduction region is greater than thermal conductivity of the plastic body, the conduction region adjoins the underside of the light-emitting chip, and the conduction region extends from the side of the plastic body facing the light-emitting chip as far as the side of the plastic body facing away from the light-emitting chip.
    Type: Application
    Filed: April 7, 2016
    Publication date: March 15, 2018
    Inventors: Martin Haushalter, Frank Singer, Thomas Schwarz, Andreas Ploessl
  • Publication number: 20170365736
    Abstract: A method for producing a multiplicity of semiconductor chips (13) is provided, comprising the following steps: providing a wafer (1) comprising a multiplicity of semiconductor bodies (2), wherein separating lines (9) are arranged between the semiconductor bodies (2), depositing a contact layer (10) on the wafer (1), wherein the material of the contact layer (10) is chosen from the following group: platinum, rhodium, palladium, gold, and the contact layer (10) has a thickness of between 8 nanometres and 250 nanometres, inclusive, applying; the wafer (1) to a film (11), at least partially severing the wafer (1) in the vertical direction along the separating lines (9) or introducing fracture nuclei (12) into the wafer (1) along the separating lines (9), and breaking the wafer (1) along the separating lines (9) or expanding the film (11) such that a spatial separation of the semiconductor chips (13) takes place, wherein the contact layer (10) is also separated.
    Type: Application
    Filed: November 30, 2015
    Publication date: December 21, 2017
    Inventors: Bernd BARCHMANN, Fabian EIGENMANN, Andreas PLOESSL
  • Publication number: 20170317067
    Abstract: An optoelectronic semiconductor device and an apparatus with an optoelectronic semiconductor device are disclosed. In an embodiment the optoelectronic semiconductor component has an emission region including a semiconductor layer sequence having a first semiconductor layer, a second semiconductor layer, and an active region arranged between the first semiconductor layer and the second semiconductor layer for generating radiation, and a protection diode region. The semiconductor component has a contact for electrically contacting the semiconductor component externally. The contact has a first contact region that is connected to the emission region in an electrically conductive manner. The contact has further a second contact region that is spaced apart from the first contact region and connected to the protection diode region in an electrically conductive manner. The first contact region and the second contact region can be electrically contacted externally by a mutual end of a connecting line.
    Type: Application
    Filed: October 21, 2015
    Publication date: November 2, 2017
    Inventors: Juergen Moosburger, Andreas Ploessl
  • Publication number: 20170271295
    Abstract: An electronic device and a method for producing an electronic device are disclosed. In an embodiment the electronic device includes a first component and a second component and a sinter layer connecting the first component to the second component, the sinter layer comprising a first metal, wherein at least one of the components comprises at least one contact layer which is arranged in direct contact with the sinter layer, which comprises a second metal different from the first metal and which is free of gold.
    Type: Application
    Filed: September 17, 2015
    Publication date: September 21, 2017
    Applicants: OSRAM Opto Semiconductors GmbH, OSRAM Opto Semiconductors GmbH
    Inventor: Andreas Ploessl
  • Publication number: 20170271438
    Abstract: A method of producing a plurality of semiconductor chips includes a) providing a carrier substrate having a first major face and a second major face opposite the first major face; b) forming a diode structure between the first major face and the second major face, the diode structure electrically insulating the first major face from the second major face at least with regard to one polarity of an electrical voltage; c) arranging a semiconductor layer sequence on the first major face of the carrier substrate; and d) singulating the carrier substrate with the semiconductor layer sequence into a plurality of semiconductor chips.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventors: Ewald Karl Michael Günther, Andreas Plössl, Heribert Zull, Thomas Veit, Mathias Kämpf, Jens Dennemarck, Bernd Böhm, Korbinian Perzlmaier
  • Patent number: 9721940
    Abstract: A radiation-emitting semiconductor chip having a semiconductor body including a semi-conductor layer sequence having an active region that generates radiation, a first semiconductor layer of a first conductor, and a second semiconductor layer of a second conductor different from the first conductor, and having a carrier on which the semiconductor body is arranged, wherein a pn junction is formed in the carrier, the carrier has a first contact and a second contact on a rear side facing away from the semiconductor body, and the active area and the pn junction connect to one another in antiparallel in relation to the forward-bias direction by the first contact and the second contact.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 1, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Plössl, Heribert Zull