Patents by Inventor Andrei V. Shchegrov

Andrei V. Shchegrov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180061691
    Abstract: Methods and systems for performing in-situ, selective spectral reflectometry (SSR) measurements of semiconductor structures disposed on a wafer are presented herein. Illumination light reflected from a wafer surface is spatially imaged. Signals from selected regions of the image are collected and spectrally analyzed, while other portions of the image are discarded. In some embodiments, a SSR includes a dynamic mirror array (DMA) disposed in the optical path at or near a field plane conjugate to the surface of the semiconductor wafer under measurement. The DMA selectively blocks the undesired portion of wafer image. In other embodiments, a SSR includes a hyperspectral imaging system including a plurality of spectrometers each configured to collect light from a spatially distinct area of a field image conjugate to the wafer surface. Selected spectral signals associated with desired regions of the wafer image are selected for analysis.
    Type: Application
    Filed: August 28, 2017
    Publication date: March 1, 2018
    Inventors: Prateek Jain, Daniel Wack, Kevin A. Peterlinz, Andrei V. Shchegrov, Shankar Krishnan
  • Publication number: 20180059019
    Abstract: Methods and systems for performing optical, model based measurements of a small sized semiconductor structure employing an anisotropic characterization of the optical dispersion properties of one or more materials comprising the structure under measurement are presented herein. This reduces correlations among geometric parameters and results in improved measurement sensitivity, improved measurement accuracy, and enhanced measurement contrast among multiple materials under measurement. In a further aspect, an element of a multidimensional tensor describing the dielectric permittivity of the materials comprising the structure is modelled differently from another element. In a further aspect, model based measurements are performed based on measurement data collected from two or more measurement subsystems combined with an anisotropic characterization of the optical dispersion of the materials under measurement.
    Type: Application
    Filed: July 14, 2017
    Publication date: March 1, 2018
    Inventors: Houssam Chouaib, Qiang Zhao, Andrei V. Shchegrov, Zhengquan Tan
  • Publication number: 20180051984
    Abstract: Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
    Type: Application
    Filed: October 15, 2017
    Publication date: February 22, 2018
    Inventors: Andrei V. Shchegrov, Shankar Krishnan, Kevin Peterlinz, Thaddeus Gerard Dziura, Noam Sapiens, Stilian Ivanov Pandev
  • Patent number: 9885962
    Abstract: Disclosed are apparatus and methods for determining overlay error in a semiconductor target. For illumination x-rays having at least one angle of incidence (AOI), a correlation model is obtained, and the correlation model correlates overlay error of a target with a modulation intensity parameter for each of one or more diffraction orders (or a continuous diffraction intensity distribution) for x-rays scattered from the target in response to the illumination x-rays. A first target is illuminated with illumination x-rays having the at least one AOI and x-rays that are scattered from the first target in response to the illumination x-rays are collected. An overlay error of the first target is determined based on the modulation intensity parameter of the x-rays collected from the first target for each of the one or more diffraction orders (or the continuous diffraction intensity distribution) and the correlation model.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: February 6, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei Veldman, Michael S. Bakeman, Andrei V. Shchegrov, Walter D. Mieher
  • Patent number: 9879977
    Abstract: Methods and systems for achieving a small measurement box size specification across a set of metrology system parameters are presented. The small measurement box size specification is achieved by selectively constraining one or more of the sets of system parameters during measurement. A subset of measurement system parameters such as illumination wavelength, polarization state, polar angle of incidence, and azimuth angle of incidence is selected for measurement to maintain a smaller measurement box size than would otherwise be achievable if the full, available range of measurement system parameters were utilized in the measurement. In this manner, control of one or more factors that affect measurement box size is realized by constraining the measurement system parameter space. In addition, a subset of measurement signals may be selected to maintain a smaller measurement box size than would otherwise be achievable if all available measurement signals were utilized in the measurement.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: January 30, 2018
    Assignee: KLA-Tencor Corporation
    Inventor: Andrei V. Shchegrov
  • Patent number: 9875946
    Abstract: Methods and systems for performing semiconductor metrology directly on device structures are presented. A measurement model is created based on measured training data collected from at least one device structure. The trained measurement model is used to calculate process parameter values, structure parameter values, or both, directly from measurement data collected from device structures of other wafers. In some examples, measurement data from multiple targets is collected for model building, training, and measurement. In some examples, the use of measurement data associated with multiple targets eliminates, or significantly reduces, the effect of under layers in the measurement result, and enables more accurate measurements. Measurement data collected for model building, training, and measurement may be derived from measurements performed by a combination of multiple, different measurement techniques.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 23, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Jonathan M. Madsen, Stilian Ivanov Pandev, Ady Levy, Daniel Kandel, Michael E. Adel, Ori Tadmor
  • Patent number: 9846132
    Abstract: Disclosed are apparatus and methods for performing small angle x-ray scattering metrology. This system includes an x-ray source for generating x-rays and illumination optics for collecting and reflecting or refracting a portion of the generated x-rays towards a particular focus point on a semiconductor sample in the form of a plurality of incident beams at a plurality of different angles of incidence (AOIs). The system further includes a sensor for collecting output x-ray beams that are scattered from the sample in response to the incident beams on the sample at the different AOIs and a controller configured for controlling operation of the x-ray source and illumination optics and receiving the output x-rays beams and generating an image from such output x-rays.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: December 19, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Michael S. Bakeman, Andrei V. Shchegrov, Ady Levy, Guorong V. Zhuang, John J. Hench
  • Publication number: 20170356853
    Abstract: In one embodiment, apparatus and methods for determining a parameter of a target are disclosed. A target having an imaging structure and a scatterometry structure is provided. An image of the imaging structure is obtained with an imaging channel of a metrology tool. A scatterometry signal is also obtained from the scatterometry structure with a scatterometry channel of the metrology tool. At least one parameter, such as overlay error, of the target is determined based on both the image and the scatterometry signal.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 14, 2017
    Applicant: KLA-Tencor Corporation
    Inventors: Noam Sapiens, Andrei V. Shchegrov, Stilian Ivanov Pandev
  • Patent number: 9826614
    Abstract: Methods and systems for realizing a high brightness, compact x-ray source suitable for high throughput, in-line x-ray metrology are presented herein. A compact electron beam accelerator is coupled to a compact undulator to produce a high brightness, compact x-ray source capable of generating x-ray radiation with wavelengths of approximately one Angstrom or less with a flux of at least 1e10 photons/s*mm^2. In some embodiments, the electron path length through the electron beam accelerator is less than ten meters and the electron path length through the undulator is also less than 10 meters. The compact x-ray source is tunable, allowing for adjustments of both wavelength and flux of the generated x-ray radiation. The x-ray radiation generated by the compact x-ray source is delivered to the specimen over a small spot, thus enabling measurements of modern semiconductor structures.
    Type: Grant
    Filed: February 16, 2014
    Date of Patent: November 21, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Michael S. Bakeman, Andrei V. Shchegrov
  • Patent number: 9816810
    Abstract: Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: November 14, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Shankar Krishnan, Kevin Peterlinz, Thaddeus Gerard Dziura, Noam Sapiens, Stilian Ivanov Pandev
  • Patent number: 9784690
    Abstract: In one embodiment, apparatus and methods for determining a parameter of a target are disclosed. A target having an imaging structure and a scatterometry structure is provided. An image of the imaging structure is obtained with an imaging channel of a metrology tool. A scatterometry signal is also obtained from the scatterometry structure with a scatterometry channel of the metrology tool. At least one parameter, such as overlay error, of the target is determined based on both the image and the scatterometry signal.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: October 10, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Noam Sapiens, Andrei V. Shchegrov, Stilian Ivanov Pandev
  • Publication number: 20170287751
    Abstract: Methods and systems for measuring process induced errors in a multiple patterning semiconductor fabrication process based on measurements of a specimen and process information from one or more previous process steps employed to fabricate the specimen are presented herein. A metrology tool is employed after a number of process steps have been executed. The metrology tool measures structural parameters of interest of metrology targets on the wafer based on measured signals and process information, and communicates correctable process parameter values to one or more process tools involved in the previous process steps. When executed by the appropriate process tool, the correctable process parameter values reduce process induced errors in the geometry of the structures fabricated by the process flow. In another aspect, multiple metrology tools are used to control a fabrication process in combination with process information from one or more process steps in the process flow.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 5, 2017
    Inventors: Alexander Kuznetsov, Antonio Arion Gellineau, Andrei V. Shchegrov
  • Patent number: 9778213
    Abstract: Methods and systems for performing simultaneous X-ray Fluorescence (XRF) and small angle x-ray scattering (SAXS) measurements over a desired inspection area of a specimen are presented. SAXS measurements combined with XRF measurements enables a high throughput metrology tool with increased measurement capabilities. The high energy nature of x-ray radiation penetrates optically opaque thin films, buried structures, high aspect ratio structures, and devices including many thin film layers. SAXS measurements of a particular location of a planar specimen are performed at a number of different out of plane orientations. This increases measurement sensitivity, reduces correlations among parameters, and improves measurement accuracy. In addition, specimen parameter values are resolved with greater accuracy by fitting data sets derived from both SAXS and XRF measurements based on models that share at least one material parameter. The fitting can be performed sequentially or in parallel.
    Type: Grant
    Filed: August 17, 2014
    Date of Patent: October 3, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Michael S. Bakeman, Andrei V. Shchegrov, Kevin Peterlinz, Thaddeus Gerard Dziura
  • Patent number: 9719932
    Abstract: Methods and systems are described herein for producing high radiance illumination light for use in semiconductor metrology based on a confined, sustained plasma. One or more plasma confining circuits introduce an electric field, a magnetic field, or a combination thereof to spatially confine a sustained plasma. The confinement of the sustained plasma decreases the size of the induced plasma resulting in increased radiance. In addition, plasma confinement may be utilized to shape the plasma to improve light collection and imaging onto the specimen. The induced fields may be static or dynamic. In some embodiments, additional energy is coupled into the confined, sustained plasma to further increase radiance. In some embodiments, the pump energy source employed to sustained the plasma is modulated in combination with the plasma confining circuit to reduce plasma emission noise.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 1, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Derrick Shaughnessy, Michael S. Bakeman, Guorong V. Zhuang, Andrei V. Shchegrov, Leonid Poslavsky
  • Patent number: 9693439
    Abstract: Methods and systems for realizing a high brightness liquid metal droplet based x-ray source suitable for high throughput x-ray metrology are presented herein. A high power laser bombards a solid target material to generate liquid metal droplets. The laser generated liquid metal droplets are excited with a focused, high power excitation beam such as an electron or laser beam. The excitation beam is synchronized with the stream of liquid metal droplets stimulated by the high power laser to achieve a stable x-ray emission generated by the excited liquid metal droplets. In some embodiments, x-ray optics are designed to efficiently collect and focus radiation within a desired emission band onto a measurement target. Reliability is improved by shielding the excitation source and the x-ray optics from the region of interaction between the excitation beam and the liquid metal droplet anode by a localized curtain of shielding gas.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: June 27, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Guorong V. Zhuang, Michael S. Bakeman, Andrei V. Shchegrov, Jonathan M. Madsen
  • Publication number: 20170167862
    Abstract: Methods and systems for characterizing dimensions and material properties of high aspect ratio, vertically manufactured devices using transmission, small-angle x-ray scattering (T-SAXS) techniques are described herein. Exemplary structures include spin transfer torque random access memory (STT-RAM), vertical NAND memory (V-NAND), dynamic random access memory (DRAM), three dimensional FLASH memory (3D-FLASH), resistive random access memory (Re-RAM), and PC-RAM. In one aspect, T-SAXS measurements are performed at a number of different orientations that are more densely concentrated near the normal incidence angle and less densely concentrated at orientations that are further from the normal incidence angle. In a further aspect, T-SAXS measurement data is used to generate an image of a measured structure based on the measured intensities of the detected diffraction orders. In another further aspect, a metrology system is configured to generate models for combined x-ray and optical measurement analysis.
    Type: Application
    Filed: August 5, 2016
    Publication date: June 15, 2017
    Inventors: Thaddeus Gerard Dziura, Antonio Arion Gellineau, Andrei V. Shchegrov
  • Publication number: 20170146399
    Abstract: A system for providing illumination to a measurement head for optical metrology is configured to combine illumination beams from a plurality of illumination sources to deliver illumination at one or more selected wavelengths to the measurement head. The intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. Illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
    Type: Application
    Filed: December 5, 2016
    Publication date: May 25, 2017
    Inventors: Gregory R. Brady, Andrei V. Shchegrov, Lawrence D. Rotter, Derrick A. Shaughnessy, Anatoly Shchemelinin, Ilya Bezel, Muzammil A. Arain, Anatoly A. Vasiliev, James Andrew Allen, Oleg Shulepov, Andrew V. Hill, Ohad Bachar, Moshe Markowitz, Yaron Ish-Shalom, Ilan Sela, Amnon Manassen, Alexander Svizher, Maxim Khokhlov, Avi Abramov, Oleg Tsibulevsky, Daniel Kandel, Mark Ghinovker
  • Publication number: 20170016815
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 19, 2017
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Publication number: 20170003123
    Abstract: Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Andrei V. Shchegrov, Shankar Krishnan, Kevin Peterlinz, Thaddeus Gerard Dziura, Noam Sapiens, Stilian Ivanov Pandev
  • Patent number: 9535018
    Abstract: Structural parameters of a specimen are determined by fitting models of the response of the specimen to measurements collected by different measurement techniques in a combined analysis. X-ray measurement data of a specimen is analyzed to determine at least one specimen parameter value that is treated as a constant in a combined analysis of both optical measurements and x-ray measurements of the specimen. For example, a particular structural property or a particular material property, such as an elemental composition of the specimen, is determined based on x-ray measurement data. The parameter(s) determined from the x-ray measurement data are treated as constants in a subsequent, combined analysis of both optical measurements and x-ray measurements of the specimen. In a further aspect, the structure of the response models is altered based on the quality of the fit between the models and the corresponding measurement data.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 3, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Kevin A. Peterlinz, Andrei V. Shchegrov, Michael S. Bakeman, Thaddeus Gerard Dziura