Patents by Inventor Andrei V. Shchegrov

Andrei V. Shchegrov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9518916
    Abstract: Disclosed are apparatus and methods for determining a structure or process parameter value of a target of interest on a semiconductor wafer. A plurality of collection patterns are defined for a spatial light beam controller positioned at a pupil image plane of a metrology tool. For each collection pattern, a signal is collected from a sensor of the metrology tool, and each collected signal represents a combination of a plurality of signals that the spatial light beam controller samples, using each collection pattern, from a pupil image of the target of interest. The collection patterns are selected so that the pupil image is reconstructable based on the collection patterns and their corresponding collection signals. The collected signal for each of the collection patterns is analyzed to determine a structure or process parameter value for the target of interest.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: December 13, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Stilian Ivanov Pandev, Alexander Kuznetsov, Gregory R. Brady, Andrei V. Shchegrov, Noam Sapiens, John J. Hench
  • Patent number: 9512985
    Abstract: The disclosure is directed to systems for providing illumination to a measurement head for optical metrology. In some embodiments of the disclosure, illumination beams from a plurality of illumination sources are combined to deliver illumination at one or more selected wavelengths to the measurement head. In some embodiments of the disclosure, intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. In some embodiments of the disclosure, illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: December 6, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Gregory R. Brady, Andrei V. Shchegrov, Lawrence D. Rotter, Derrick Shaughnessy, Anatoly Shchemelinin, Ilya Bezel, Muzammil A. Arain, Anatoly A. Vasiliev, James Andrew Allen, Oleg Shulepov, Andrew V. Hill, Ohad Bachar, Moshe Markowitz, Yaron Ish-Shalom, Ilan Sela, Amnon Manassen, Alexander Svizher, Maxim Khokhlov, Avi Abramov, Oleg Tsibulevsky, Daniel Kandel, Mark Ghinovker
  • Publication number: 20160334326
    Abstract: Methods and systems are presented to reduce the illumination spot size projected onto a measurement target and associated spillover onto area surrounding a measurement target. In one aspect, a spatial light modulator (SLM) is located in the illumination path between the illumination light source and the measurement sample. The SLM is configured to modulate amplitude, phase, or both, across the path of the illumination light to reduce wavefront errors. In some embodiments, the desired state of the SLM is based on wavefront measurements performed in an optical path of the metrology system. In another aspect, an illumination aperture having an image plane tilted at an oblique angle with respect to a beam of illumination light is employed to overcome defocusing effects in metrology systems that employ oblique illumination of the measurement sample. In some embodiments, the illumination aperture, objective lens, and specimen are aligned to satisfy the Scheimpflug condition.
    Type: Application
    Filed: May 11, 2015
    Publication date: November 17, 2016
    Inventors: Noam Sapiens, Kevin A. Peterlinz, Alexander Buettner, Kerstin Purrucker, Andrei V. Shchegrov
  • Patent number: 9490182
    Abstract: Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 8, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Shankar Krishnan, Kevin Peterlinz, Thaddeus Gerard Dziura, Noam Sapiens, Stilian Ivanov Pandev
  • Publication number: 20160320319
    Abstract: Methods and systems for performing overlay and edge placement errors of device structures based on x-ray diffraction measurement data are presented. Overlay error between different layers of a metrology target is estimated based on the intensity variation within each x-ray diffraction order measured at multiple, different angles of incidence and azimuth angles. The estimation of overlay involves a parameterization of the intensity modulations of common orders such that a low frequency shape modulation is described by a set of basis functions and a high frequency overlay modulation is described by an affine-circular function including a parameter indicative of overlay. In addition to overlay, a shape parameter of the metrology target is estimated based on a fitting analysis of a measurement model to the intensities of the measured diffraction orders. In some examples, the estimation of overlay and the estimation of one or more shape parameter values are performed simultaneously.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 3, 2016
    Inventors: John Hench, Andrei V. Shchegrov, Michael S. Bakeman
  • Publication number: 20160322267
    Abstract: Disclosed are apparatus and methods for characterizing a plurality of structures of interest on a semiconductor wafer. A plurality of models having varying combinations of floating and fixed critical parameters and corresponding simulated spectra is generated. Each model is generated to determine one or more critical parameters for unknown structures based on spectra collected from such unknown structures. It is determined which one of the models best correlates with each critical parameter based on reference data that includes a plurality of known values for each of a plurality of critical parameters and corresponding known spectra. For spectra obtained from an unknown structure using a metrology tool, different ones of the models are selected and used to determine different ones of the critical parameters of the unknown structure based on determining which one of the models best correlates with each critical parameter based on the reference data.
    Type: Application
    Filed: July 7, 2016
    Publication date: November 3, 2016
    Applicant: KLA-Tencor Corporation
    Inventors: In-Kyo Kim, Xin Li, Leonid Poslavsky, Liequan Lee, Meng Cao, Sungchul Yoo, Andrei V. Shchegrov, Sangbong Park
  • Patent number: 9412673
    Abstract: Disclosed are apparatus and methods for characterizing a plurality of structures of interest on a semiconductor wafer. A plurality of models having varying combinations of floating and fixed critical parameters and corresponding simulated spectra is generated. Each model is generated to determine one or more critical parameters for unknown structures based on spectra collected from such unknown structures. It is determined which one of the models best correlates with each critical parameter based on reference data that includes a plurality of known values for each of a plurality of critical parameters and corresponding known spectra. For spectra obtained from an unknown structure using a metrology tool, different ones of the models are selected and used to determine different ones of the critical parameters of the unknown structure based on determining which one of the models best correlates with each critical parameter based on the reference data.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: August 9, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: In-Kyo Kim, Xin Li, Leonid Poslavsky, Liequan Lee, Meng Cao, Sungchul Yoo, Andrei V. Shchegrov, Sangbong Park
  • Patent number: 9400246
    Abstract: The present invention may include a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: July 26, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick Shaughnessy
  • Publication number: 20160202193
    Abstract: Methods and systems for optimizing measurement system parameter settings of an x-ray based metrology system are presented. X-ray based metrology systems employing an optimized set of measurement system parameters are used to measure structural, material, and process characteristics associated with different semiconductor fabrication processes with greater precision and accuracy. In one aspect, a set of values of one or more machine parameters that specify a measurement scenario is refined based at least in part on a sensitivity of measurement data to a previous set of values of the one or more machine parameters. The refinement of the values of the machine parameters is performed to maximize precision, maximize accuracy, minimize correlation between parameters of interest, or any combination thereof. Refinement of the machine parameter values that specify a measurement scenario can be used to optimize the measurement recipe to reduce measurement time and increase measurement precision and accuracy.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 14, 2016
    Inventors: John J. Hench, Andrei V. Shchegrov, Michael S. Bakeman
  • Publication number: 20160139032
    Abstract: An inspection system is provided that can include a reflectometer having a light source for projecting light, and a light splitter for receiving the light projected by the light source, transforming at least one aspect of the light, and projecting the light once transformed. The reflectometer further has an off-axis unobscured objective lens through which the light transformed by the light splitter passes to contact a fabricated component, and has a detector for detecting a result of the transformed light contacting the fabricated component. The inspection system can additionally, or alternatively, include an ellipsometer having a light source similar to the reflectometer, and further a polarizing element to polarize the light of the light splitter. The polarized light passes through an off-axis unobscured objective lens to contact a fabricated component, and a detector detects a result of the polarized light contacting the fabricated component.
    Type: Application
    Filed: March 25, 2015
    Publication date: May 19, 2016
    Inventors: Claudio Rampoldi, Barry Blasenheim, Alexander Kuznetsov, Shankar Krishnan, Andrei V. Shchegrov
  • Publication number: 20160141193
    Abstract: A system, method and computer program product are provided for combining raw data from multiple metrology tools. Reference values are obtained for at least one parameter of a training component. Signals are collected for the at least one parameter of the training component, utilizing a first metrology tool and a different second metrology tool. Further, at least a portion the signals are transformed into a set of signals, and for each of the at least one parameter of the training component, a corresponding relationship between the set of signals and the reference values is determined and a corresponding training model is created therefrom. Signals from a target component are collected utilizing at least the first metrology tool and the second metrology tool, and each created training model is applied to the signals collected from the target component to measure parametric values for the target component.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 19, 2016
    Inventors: Stilian Ivanov Pandev, Thaddeus Gerard Dziura, Andrei V. Shchegrov
  • Publication number: 20160109375
    Abstract: Methods and systems for measuring metrology targets smaller than the illumination spot size employed to perform the measurement are described herein. Collected measurement signals contaminated with information from structures surrounding the target area are reconstructed to eliminate the contamination. In some examples, measurement signals associated one or more small targets and one or more large targets located in close proximity to one another are used to train a signal reconstruction model. The model is subsequently used to reconstruct measurement signals from other small targets. In some other examples, multiple measurements of a small target at different locations within the target are de-convolved to estimate target area intensity. Reconstructed measurement signals are determined by a convolution of the illumination spot profile and the target area intensity. In a further aspect, the reconstructed signals are used to estimate values of parameters of interest associated with the measured structures.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 21, 2016
    Inventors: Stilian Ivanov Pandev, Wei Lu, Andrei V. Shchegrov, Pablo Rovira, Jonathan M. Madsen
  • Patent number: 9311431
    Abstract: The disclosure is directed to improving optical metrology for a sample with complex structural attributes utilizing custom designed secondary targets. At least one parameter of a secondary target may be controlled to improve sensitivity for a selected parameter of a primary target and/or to reduce correlation of the selected parameter with other parameters of the primary target. Parameters for the primary and secondary target may be collected. The parameters may be incorporated into a scatterometry model. Simulations utilizing the scatterometry model may be conducted to determine a level of sensitivity or a level of correlation for the selected parameter of the primary target. The controlled parameter of the secondary target may be modified until a selected level of sensitivity or a selected level of correlation is achieved.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 12, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Sungchul Yoo, Andrei V. Shchegrov, Thaddeus G. Dziura, InKyo Kim, SeungHwan Lee, ByeoungSu Hwang, Leonid Poslavsky
  • Patent number: 9255877
    Abstract: Methods and systems for evaluating the capability of a measurement system to track measurement parameters through a given process window are presented herein. Performance evaluations include random perturbations, systematic perturbations, or both to effectively characterize the impact of model errors, metrology system imperfections, and calibration errors, among others. In some examples, metrology target parameters are predetermined as part of a Design of Experiments (DOE). Estimated values of the metrology target parameters are compared to the known DOE parameter values to determine the tracking capability of the particular measurement. In some examples, the measurement model is parameterized by principal components to reduce the number of degrees of freedom of the measurement model. In addition, exemplary methods and systems for optimizing the measurement capability of semiconductor metrology systems for metrology applications subject to process variations are presented.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: February 9, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei Veldman, Andrei V. Shchegrov, Gregory Brady, Thaddeus Gerard Dziura, Stilian Ivanov Pandev, Alexander Kuznetsov
  • Publication number: 20160003609
    Abstract: Methods and systems for estimating values of parameters of interest of actual device structures based on optical measurements of nearby metrology targets are presented herein. High throughput, inline metrology techniques are employed to measure metrology targets located near actual device structures. Measurement data collected from the metrology targets is provided to a trained signal response metrology (SRM) model. The trained SRM model estimates the value of one or more parameters of interest of the actual device structure based on the measurements of the metrology target. The SRM model is trained to establish a functional relationship between actual device parameters measured by a reference metrology system and corresponding optical measurements of at least one nearby metrology target. In a further aspect, the trained SRM is employed to determine corrections of process parameters to bring measured device parameter values within specification.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 7, 2016
    Inventors: Andrei V. Shchegrov, Thaddeus Gerard Dziura, Stilian Ivanov Pandev, Leonid Poslavsky
  • Publication number: 20150323316
    Abstract: Methods and systems for creating a measurement model based only on measured training data are presented. The trained measurement model is then used to calculate overlay values directly from measured scatterometry data. The measurement models receive scatterometry signals directly as input and provide overlay values as output. In some embodiments, overlay error is determined from measurements of design rule structures. In some other embodiments, overlay error is determined from measurements of specialized target structures. In a further aspect, the measurement model is trained and employed to measure additional parameters of interest, in addition to overlay, based on the same or different metrology targets. In some embodiments, measurement data from multiple targets, measurement data collected by multiple metrologies, or both, is used for model building, training, and measurement. In some embodiments, an optimization algorithm automates the measurement model building and training process.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 12, 2015
    Inventors: Andrei V. Shchegrov, Stilian Ivanov Pandev, Jonathan M. Madsen, Alexander Kuznetsov, Walter Dean Mieher
  • Publication number: 20150323471
    Abstract: In one embodiment, apparatus and methods for determining a parameter of a target are disclosed. A target having an imaging structure and a scatterometry structure is provided. An image of the imaging structure is obtained with an imaging channel of a metrology tool. A scatterometry signal is also obtained from the scatterometry structure with a scatterometry channel of the metrology tool. At least one parameter, such as overlay error, of the target is determined based on both the image and the scatterometry signal.
    Type: Application
    Filed: May 8, 2015
    Publication date: November 12, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Noam Sapiens, Andrei V. Shchegrov, Stilian Ivanov Pandev
  • Publication number: 20150176985
    Abstract: Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 25, 2015
    Inventors: Andrei V. Shchegrov, Shankar Krishnan, Kevin Peterlinz, Thaddeus Gerard Dziura, Noam Sapiens, Stilian Ivanov Pandev
  • Publication number: 20150117610
    Abstract: Disclosed are apparatus and methods for determining overlay error in a semiconductor target. For illumination x-rays having at least one angle of incidence (AOI), a correlation model is obtained, and the correlation model correlates overlay error of a target with a modulation intensity parameter for each of one or more diffraction orders (or a continuous diffraction intensity distribution) for x-rays scattered from the target in response to the illumination x-rays. A first target is illuminated with illumination x-rays having the at least one AOI and x-rays that are scattered from the first target in response to the illumination x-rays are collected. An overlay error of the first target is determined based on the modulation intensity parameter of the x-rays collected from the first target for each of the one or more diffraction orders (or the continuous diffraction intensity distribution) and the correlation model.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 30, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Andrei Veldman, Michael S. Bakeman, Andrei V. Shchegrov, Walter D. Mieher
  • Patent number: 9019999
    Abstract: A compact, optically-pumped solid-state microchip laser device uses efficient nonlinear intracavity frequency conversion for obtaining low-cost green and blue laser sources. The laser includes a solid-state gain medium, such as Nd:YVO4, and a nonlinear crystal. The nonlinear crystal is formed of periodically poled lithium niobate or periodically poled lithium tantalate, and the crystal is either MgO-doped, ZnO-doped, or stoichiometric to ensure high reliability. The nonlinear crystal provides efficient frequency doubling to translate energy from an infrared pump laser beam into the visible wavelength range. The laser device is assembled in a package having an output aperture for the output beam and being integrated with an optical bench accommodating a laser assembly. The package encloses and provides heat sinking for the semiconductor diode pump laser, the microchip laser cavity assembly, the optical bench platform, and electrical leads.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 28, 2015
    Assignee: Spectralus Corporation
    Inventors: Stepan Essaian, Dzhakhangir Khaydarov, Andrei V. Shchegrov