Patents by Inventor Andrew A. Shapiro
Andrew A. Shapiro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250124179Abstract: A method for automated spacecraft design includes receiving mission parameters provided by a client for spacecraft design, generating one or more concept designs based on the received mission parameters, each concept design including one or more components selected for each subsystem included in a designed spacecraft, for each concept design, generating a CAD model including a collection of CADs representing structures of the one or more components selected for each subsystem included in the designed spacecraft, performing a series of analyses or simulations to evaluate a performance of the CAD model, and generating a digital twin representing a virtual representation of the designed spacecraft.Type: ApplicationFiled: July 1, 2024Publication date: April 17, 2025Inventors: Eleftherios Gdoutos, Andrew A. Shapiro, David Kervin
-
Patent number: 11920225Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe-Co alloy material (e.g., the Fe-Co-V alloy Hiperco-50(R)). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: GrantFiled: May 9, 2022Date of Patent: March 5, 2024Assignee: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Patent number: 11738889Abstract: A propellant storage system that utilizes an integrated internal lattice structure within the fuel storage tank(s) to provide additional strength and anti-slosh features. The internal lattice structure lends its additional strength properties to adapt the fuel storage tank to unconventional geometries to allow for better compaction and weight savings in deployment vehicles such as satellites.Type: GrantFiled: March 20, 2020Date of Patent: August 29, 2023Assignee: California Institute of TechnologyInventors: Hunjoo Kim, Andrew A. Shapiro-Scharlotta
-
Patent number: 11731196Abstract: Systems and methods of additively manufacturing multi-material electromagnetic shields are described. Additive manufacturing processes use co-deposition to incorporate multiple materials and/or microstructures selected to achieve specified shield magnetic properties. Geometrically complex shields can be manufactured with alternating shielding materials optimized for the end use application. The microstructures of the printed shields can be tuned by optimizing the print parameters.Type: GrantFiled: August 5, 2021Date of Patent: August 22, 2023Assignee: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Nicholas E. Ury, Katherine Dang, Joshua Berman, Pablo Narvaez, Vilupanur A. Ravi, John Paul Castelo Borgonia, Joelle T. Cooperrider, Bryan W. McEnerney, Andrew A. Shapiro-Scharlotta
-
Publication number: 20220266338Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe-Co alloy material (e.g., the Fe-Co-V alloy Hiperco-50(R)). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: ApplicationFiled: May 9, 2022Publication date: August 25, 2022Applicant: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Publication number: 20220258242Abstract: In some embodiments, high-energy additive manufacturing (HE-AM) (e.g., directed energy deposition, powder injection, powder bed fusion, electron beam melting, solid-state, and ultrasonic) is used to overcome constraints of comparative EES fabrication techniques to produce chemical additive-free electrodes with complex, highly versatile designs for next generation EES. An exemplary rapid fabrication technique provides an approach for improving electrochemical performance while increasing efficiency and sustainability, reducing time to market, and lowering production costs. With this exemplary technique, which utilizes computer models for location specific layer-by-layer fabrication of three-dimensional parts (e.g., versatile design), a high degree of control over processing conditions may be achieved to enhance both the design and performance of EES systems.Type: ApplicationFiled: April 24, 2020Publication date: August 18, 2022Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, California Institute of TechnologyInventors: Julie M. Schoenung, Katherine A. Acord, Baolong Zheng, Umberto Scipioni Bertoli, Andrew A. Shapiro, Qian Nataly Chen, William C. West
-
Publication number: 20220203442Abstract: Systems and methods of additively manufacturing multi-material electromagnetic shields are described. Additive manufacturing processes use co-deposition to incorporate multiple materials and/or microstructures selected to achieve specified shield magnetic properties. Geometrically complex shields can be manufactured with alternating shielding materials optimized for the end use application. The microstructures of the printed shields can be tuned by optimizing the print parameters.Type: ApplicationFiled: August 5, 2021Publication date: June 30, 2022Applicant: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Nicholas E. Ury, Katherine Dang, Joshua Berman, Pablo Narvaez, Vilupanur A. Ravi, John Paul Castelo Borgonia, Joelle T. Cooperrider, Bryan W. McEnerney, Andrew A. Shapiro-Scharlotta
-
Patent number: 11351613Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: GrantFiled: June 3, 2019Date of Patent: June 7, 2022Assignee: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Patent number: 11077655Abstract: Printed textiles and related manufacturing methods are provided. Textile materials can include laced mesh fabrics made of rigid components. The laced mesh structures are designed for space applications, including but not limited to adaptive and foldable reflectors, capturing systems, debris and micrometeorite shielding, shading systems, sample capturing, and various other applications. The laced mesh structures are used in the generation of tailored, unique radio-frequency antennas and receivers that allow for active tuning/receiving capabilities. The tailored structure can also include multi-material systems mixing dielectric and conductive layers for enhanced, tunable transmission. Laced mesh structures can also be used for enhanced thermal control of components, with the ability to tailor thermal conductivity and emissivity, to create thermal engineered components via the generation of localized or global thermal response (e.g. zone thermal control).Type: GrantFiled: May 31, 2018Date of Patent: August 3, 2021Assignee: California Institute of TechnologyInventors: Raul Polit Casillas, Andrew A. Shapiro, John Paul Castelo Borgonia, Bryan William McEnerney
-
Publication number: 20200411838Abstract: In some embodiments, high-energy additive manufacturing (HE-AM) (e.g., directed energy deposition, powder injection, powder bed fusion, electron beam melting, solid-state, and ultrasonic) is used to overcome constraints of comparative EES fabrication techniques to produce chemical additive-free electrodes with complex, highly versatile designs for next generation EES. An exemplary rapid fabrication technique provides an approach for improving electrochemical performance while increasing efficiency and sustainability, reducing time to market, and lowering production costs. With this exemplary technique, which utilizes computer models for location specific layer-by-layer fabrication of three-dimensional parts (e.g., versatile design), a high degree of control over processing conditions may be achieved to enhance both the design and performance of EES systems.Type: ApplicationFiled: April 27, 2020Publication date: December 31, 2020Inventors: Julie M. Schoenung, Katherine A. Acord, Baolong Zheng, Umberto Scipioni Bertoli, Andrew A. Shapiro, Qian Nataly Chen, William C. West
-
Publication number: 20200299006Abstract: A propellant storage system that utilizes an integrated internal lattice structure within the fuel storage tank(s) to provide additional strength and anti-slosh features. The internal lattice structure lends its additional strength properties to adapt the fuel storage tank to unconventional geometries to allow for better compaction and weight savings in deployment vehicles such as satellites.Type: ApplicationFiled: March 20, 2020Publication date: September 24, 2020Applicant: California Institute of TechnologyInventors: Hunjoo Kim, Andrew A. Shapiro-Scharlotta
-
Publication number: 20190366435Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: ApplicationFiled: June 3, 2019Publication date: December 5, 2019Applicant: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Publication number: 20180345651Abstract: Printed textiles and related manufacturing methods are provided. Textile materials can include laced mesh fabrics made of rigid components. The laced mesh structures are designed for space applications, including but not limited to adaptive and foldable reflectors, capturing systems, debris and micrometeorite shielding, shading systems, sample capturing, and various other applications. The laced mesh structures are used in the generation of tailored, unique radio-frequency antennas and receivers that allow for active tuning/receiving capabilities. The tailored structure can also include multi-material systems mixing dielectric and conductive layers for enhanced, tunable transmission. Laced mesh structures can also be used for enhanced thermal control of components, with the ability to tailor thermal conductivity and emissivity, to create thermal engineered components via the generation of localized or global thermal response (e.g. zone thermal control).Type: ApplicationFiled: May 31, 2018Publication date: December 6, 2018Applicant: California Institute of TechnologyInventors: Raul Polit Casillas, Andrew A. Shapiro, John Paul Castelo Borgonia, Bryan William McEnerney
-
Patent number: 9512894Abstract: An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.Type: GrantFiled: March 27, 2013Date of Patent: December 6, 2016Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Nicholas Boechler, Robert Peter Dillon, Chiara Daraio, Gregory L. Davis, Andrew A. Shapiro, John Paul C. Borgonia, Daniel Louis Kahn
-
Patent number: 9507061Abstract: A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.Type: GrantFiled: November 16, 2012Date of Patent: November 29, 2016Assignee: California Institute of TechnologyInventors: Douglas C. Hofmann, Gregory L. Davis, Gregory S. Agnes, Andrew A. Shapiro
-
Publication number: 20140097562Abstract: An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.Type: ApplicationFiled: March 27, 2013Publication date: April 10, 2014Inventors: Nicholas BOECHLER, Robert Peter DILLON, Chiara DARAIO, Gregory L. DAVIS, Andrew A. SHAPIRO, John Paul C. BORGONIA, Daniel Louis KAHN
-
Patent number: 5661647Abstract: Electronic VHF/UHF power conversion circuitry is manufactured using the benefits of low temperature co-fired ceramic substrates to provide interconnection between the discrete components of the power conversion circuit, and integrate various non-semiconductor devices into the body of the low temperature co-fired ceramic structure, such as resistors, capacitors, inductors and transformers. Use of a low temperature co-fired ceramic structure as a substrate on and within which VHF/UHF power conversion circuitry is formed allows selection of various conductive and resistive inks to precisely form interconnection circuitry and selected non-semiconductor components which improves the stability and reduces the cost of VHF/UHF power conversion circuits.Type: GrantFiled: June 7, 1995Date of Patent: August 26, 1997Assignee: Hughes ElectronicsInventors: Robert D. Washburn, Robert F. McClanahan, Andrew A. Shapiro, Ramona G. Pond, Gerald P. Chernicky, William J. Council, Earl H. Martin
-
Patent number: 5604673Abstract: Electronic power conversion circuitry, for frequencies not exceeding 30 MHz, is manufactured using the benefits of low temperature co-fired ceramic substrates to provide interconnection between the discrete components of the power conversion circuit, and integrate various non-semiconductor devices into the body of the low temperature co-fired ceramic structure, such as resistors, capacitors, inductors and transformers. Use of a low temperature co-fired ceramic structure as a substrate on and within which power conversion circuitry is formed allows selection of various conductive and resistive inks to precisely form interconnection circuitry and selected non-semiconductor components which improves the stability and reduces the cost of power conversion circuits.Type: GrantFiled: June 7, 1995Date of Patent: February 18, 1997Assignee: Hughes ElectronicsInventors: Robert D. Washburn, Robert F. McClanahan, Andrew A. Shapiro
-
Patent number: 5532667Abstract: A ferromagnetic material (18,20) in ink or tape form is sinterable using a same firing profile as and has approximately the same thermal shrinkage characteristics as low-temperature-cofired-ceramic (LTCC) tape, and is chemically non-reactive therewith. The ferromagnetic material (18,20) is applied to the surfaces of LTCC tape sheets (12,14,16) to form desired elements such as cores for inductors (22) and transformers and magnetic shields. Ferromagnetic vertical interconnects (vias) (54) can be formed by punching holes (56) through tape sheets (46) and filling them with ferromagnetic ink. The tape sheets (12,14,16) and ferromagnetic elements (18,20) are laminated together and cofired to form an integral structure (10). Ferromagnetic and non-magnetic components (114) can be fabricated separately and inserted into cavities (104a,-106a,108a) in tape sheets (104,106,108) prior to cofiring.Type: GrantFiled: October 11, 1995Date of Patent: July 2, 1996Assignee: Hughes Aircraft CompanyInventors: Carol Haertling, Andrew A. Shapiro, Charles A. Goodman, Ramona G. Pond, Robert D. Washburn, Robert F. McClanahan, Carlos H. Gonzalez, David M. Lusher
-
Patent number: 5312674Abstract: A ferromagnetic material (18,20) in ink or tape form is sinterable using a same firing profile as and has approximately the same thermal shrinkage characteristics as low-temperature-cofired-ceramic (LTCC) tape, and is chemically non-reactive therewith. The ferromagnetic material (18,20) is applied to the surfaces of LTCC tape sheets (12,14,16) to form desired elements such as cores for inductors (22) and transformers and magnetic shields. Ferromagnetic vertical interconnects (vias) (54) can be formed by punching holes (56) through tape sheets (46) and filling them with ferromagnetic ink. The tape sheets (12,14,16) and ferromagnetic elements (18,20) are laminated together and cofired to form an integral structure (10). Ferromagnetic and non-magnetic components (114) can be fabricated separately and inserted into cavities (104a, 106a,108a) in tape sheets (104,106,108) prior to cofiring.Type: GrantFiled: July 31, 1992Date of Patent: May 17, 1994Assignee: Hughes Aircraft CompanyInventors: Carol Haertling, Andrew A. Shapiro, Charles A. Goodman, Ramona G. Pond, Robert D. Washburn, Robert F. McClanahan, Carlos H. Gonzalez, David M. Lusher