Patents by Inventor Andrew B. Kibler

Andrew B. Kibler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210025688
    Abstract: A method for estimating an offset between a first group and a second group of contacts with respect to a longitudinal direction. Each group of contacts includes a plurality of electrodes arranged along a surface of a body of a lead. The method includes the steps of: (a) Selecting a number of electrode pairs, each electrode pair including an electrode of the first contact group and an electrode of the second contact group, and measuring the impedances between the electrodes of each selected electrode pair; (b) pre-conditioning the measured impedances for attenuating unwanted noise to generate pre-conditioned impedances, and (c) determining the lead offset using the pre-conditioned impedances.
    Type: Application
    Filed: October 15, 2020
    Publication date: January 28, 2021
    Inventors: Pamela Shamsie Victoria Riahi, Andrew B. Kibler, Sean Slee, Christopher S. De Voir
  • Publication number: 20200406024
    Abstract: A catheter system and a recapture assembly for the catheter system which serves to expand the system's functionality to support highly-articulated implant recapture. The recapture assembly comprises: a cinch tube with a centering device provided at the distal end of the cinch tube and a tether located within the cinch tube adapted to be telescoped relative to the cinch tube. Also, a method for retrieval of the implant comprising a hitch-like element at its proximal end by the catheter system is disclosed.
    Type: Application
    Filed: February 14, 2019
    Publication date: December 31, 2020
    Applicant: Biotronik SE & Co. KG
    Inventors: Brian M. Taff, Andrew B. Kibler
  • Patent number: 10870000
    Abstract: A device for neurostimulation has a number N of electrodes. N is equal to or larger than 3. The device is configured to deliver via each electrode therapeutic electric phases of amplitudes I1, I2, . . . IN, with a frequency f and after each therapeutic electric phase a number of N?1 charge balancing electric phases. The charge balancing electric phases of the respective electrode each have a polarity that is opposite the polarity of the preceding therapeutic electric phase of the respective electrode. The device is configured to return for each electrode the current of each therapeutic electric phase in the other N?1 electrodes.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: December 22, 2020
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Andrew B. Kibler, Marcelo Baru, Dirk Muessig
  • Patent number: 10842996
    Abstract: A device for neurostimulation including an electrode structure for delivering stimulation pulses to a nerve as well as for processing and extracting evoked compound action potentials, wherein the electrode structure comprises at least a first anode, at least a second anode opposing the first anode and a plurality of cathodes arranged between said anodes, wherein said cathodes are asymmetrically arranged with respect to said at least first and second anode to permit evoked compound action potential sensing via the anode electrodes simultaneously with stimulation.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: November 24, 2020
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Marcelo Baru, Andrew B. Kibler
  • Publication number: 20200360687
    Abstract: An implantable medical device comprises a housing having a proximal end and a distal end, an electrode device arranged in the region of the distal end, and an anchoring device fixedly attached to the housing in the region of the distal end. The anchoring device comprises at least one anchoring member having a pre-shaped first configuration, the at least one anchoring member being deflectable from the pre-shaped first configuration into a strained second configuration for placement of the implantable medical device on an object. The at least one anchoring member comprises a tip section and a connection section extending in between the tip section and the distal end of the housing, wherein at least in the pre-shaped first configuration the tip section comprises a straight portion adjoining the connection section at a transition location by forming a bend in between the straight portion and the connection section.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Inventors: Devan Hughes, R. Hollis Whittington, Dirk Muessig, Andrew B. Kibler, Wantjinarjo Suwito, Eric Austin
  • Publication number: 20200316391
    Abstract: A method programs an implantable medical device such that it is configured for stimulating neural tissue by at least one electrode. The method includes: performing, by means of the implantable medical device, an evoked compound action potential (eCAP) threshold search by stimulating the neural tissue with test stimulation pulses; determining, based on the eCAP threshold search, an eCAP threshold amplitude and a coupling factor that is indicative of a coupling between the at least one electrode and the neural tissue; and generating a first set of stimulation parameters containing at least a stimulation amplitude that is determined in dependence on the eCAP threshold amplitude and the coupling factor.
    Type: Application
    Filed: March 20, 2020
    Publication date: October 8, 2020
    Inventors: ANDREW B. KIBLER, LAUREN KRAITER, LARRY STOTTS
  • Publication number: 20200188681
    Abstract: An implantable medical system for intra-body communication, comprising an implantable first device. The first device comprises a plurality of capacitors and a DC blocking capacitor. The first device is configured to discharge the plurality of capacitors via the DC blocking capacitor in an encoded sequence to generate a signal.
    Type: Application
    Filed: November 21, 2019
    Publication date: June 18, 2020
    Inventors: Marcelo Baru, Brian M. Taff, Andrew B. Kibler
  • Publication number: 20200132434
    Abstract: A method for estimating an offset between a first group and a second group of contacts with respect to a longitudinal direction. Each group of contacts includes a plurality of electrodes arranged along a surface of a body of a lead. The method includes the steps of: (a) Selecting a number of electrode pairs, each electrode pair including an electrode of the first contact group and an electrode of the second contact group, and measuring the impedances between the electrodes of each selected electrode pair; (b) pre-conditioning the measured impedances for attenuating unwanted noise to generate pre-conditioned impedances, and (c) determining the lead offset using the pre-conditioned impedances.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 30, 2020
    Inventors: PAMELA SHAMSIE VICTORIA RIAHI, ANDREW B. KIBLER, SEAN SLEE, CHRISTOPHER S. DE VOIR
  • Patent number: 10632304
    Abstract: A catheter for delivering an implantable stimulation device in a patient, the catheter including a probe having a plurality of electrodes, wherein the probe is transferrable from a reduced delivery state for movement within a human body to an expanded tissue contacting state, in which at least one electrode of the plurality of electrodes is in contact with tissue; and at least one holder to which an implantable stimulation device is attachable, wherein the at least one holder is positioned proximally to the probe section by a predefined distance ā€œdā€.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 28, 2020
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Dirk Muessig, Andrew B. Kibler
  • Publication number: 20200086124
    Abstract: A medical device for electrical stimulation of a patient. A pulse generator generates current pulses for the electrical stimulation. An electrode lead with a plurality of electrode contacts delivers the pulses to tissue of the patient. The pulse generator repeatedly delivers a current pulse between two electrodes forming a first group and delivers a charge balancing current pulse after each current pulse between the electrodes of the first group. The respective current pulse is separated from the succeeding charge balancing current pulse by an inter pulse interval. The respective current pulse has an amplitude with the same absolute magnitude as the succeeding charge balancing current pulse, but is of opposite sign. The pulse generator delivers between each current pulse and the succeeding charge balancing current pulse a current pulse between two further electrodes forming a second group of electrode contacts of the plurality of electrode contacts.
    Type: Application
    Filed: October 17, 2019
    Publication date: March 19, 2020
    Inventors: ANDREW B. KIBLER, SEAN SLEE, PAMELA SHAMSIE VICTORIA RIAHI
  • Publication number: 20200086123
    Abstract: A medical device for generating electrical stimulation of a patient includes: a pulse generator configured to generate current pulses for electrical stimulation of the patient, and at least one electrode lead configured to be connected to the pulse generator. The electrode lead has a plurality of electrode contacts for delivering the current pulses to tissue of the patient. The pulse generator is configured to generate the current pulses with a rate in the range from 1 Hz to 100 kHz, and the individual current pulse has a pulse width in a range from 10 ?s to 10 ms.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Inventors: ANDREW B. KIBLER, SEAN SLEE, PAMELA SHAMSIE VICTORIA RIAHI
  • Patent number: 10583296
    Abstract: An implantable pulse generator system includes a nerve stimulation unit providing vagal nerve stimulation (VNS) pulses; an autonomic tone sensor which determines the patient's autonomic status; and a control unit connected to the nerve stimulation unit and the autonomic tone sensor. The control unit controls the nerve stimulation unit to generate VNS with varying intensity, depending on the autonomic status (which is evaluated in a moving window). The control unit gradually increases VNS intensity when the autonomic status indicates a shift toward more sympathetic dominance, and it gradually decreases VNS intensity when the autonomic status indicates a shift toward more parasympathetic dominance, wherein the gradual increase and the gradual decrease of the VNS intensity follow two different paths.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: March 10, 2020
    Assignee: BIOTRONIK SE & CO. KG
    Inventors: Jie Lian, Lauren Kraiter, Andrew B. Kibler
  • Patent number: 10441793
    Abstract: An implantable leadless pacemaker (iLP) for a human or animal heart, wherein the iLP includes a housing, at least two electrode poles for picking up electrical potentials and/or delivering electrical stimulation, a stimulation control unit in connection with the electrode poles, a sensing unit that is in connection with at least one electrode pole, a signal processing unit in connection with the sensing unit, a signal evaluation unit in connection with the signal processing unit and/or the sensing unit, and an energy source. The sensing unit is configured to sense a first signal associated with an activity of the first heart chamber, and the stimulation control unit is configured to deliver electrical stimulation in the first heart chamber via the at least two electrode poles. wherein the sensing unit is configured to sense a second signal associated with an activity of a second heart chamber.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: October 15, 2019
    Assignee: Biotronik SE & Co. KG
    Inventors: Dirk Muessig, Andrew B. Kibler, Larry Stotts
  • Publication number: 20190254556
    Abstract: A medical implant system, comprising: an implant that is implantable into a patient, and a catheter configured for explanting the implant. The catheter and/or the implant is/are configured to measure a distance (D) between a tip of the catheter and the implant. The system is configured to generate an output signal indicative of said distance (D). In another embodiment, the system comprises a sensor element which is configured to measure at least one physical quantity indicative of a local anatomical environment of the implant. Also, methods for recapturing and/or explanting an implanted implant are provided.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 22, 2019
    Inventors: Brian M. Taff, Andrew B. Kibler, R. Hollis Whittington, Dirk Muessig, Larry Stotts
  • Patent number: 10350405
    Abstract: System, method, and tool for implanting an electrode cuff. The system can include a cuff and a slider implement, where the cuff is temporarily retained within and/or onto the slider implement by a retainer mechanism during implantation. The cuff can be structured to exhibit a natural rolled shape, but can be resiliently bendable so as to flex from the rolled shape while having a tendency to move back to the rolled shape. The cuff can be releasably secured to a portion of the slider implement, which may include holding the cuff in an unrolled shape. The cuff can then be positioned adjacent the nerve. The retainer mechanism can then be actuated to allow the cuff to advance towards its naturally rolled shape, thereby wrapping around the nerve.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: July 16, 2019
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Wantjinarjo Suwito, Isaac Kreft, Andrew B. Kibler, Jeffrey A. von Arx
  • Publication number: 20190030339
    Abstract: A device for neurostimulation including an electrode structure for delivering stimulation pulses to a nerve as well as for processing and extracting evoked compound action potentials, wherein the electrode structure comprises at least a first anode, at least a second anode opposing the first anode and a plurality of cathodes arranged between said anodes, wherein said cathodes are asymmetrically arranged with respect to said at least first and second anode to permit evoked compound action potential sensing via the anode electrodes simultaneously with stimulation.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 31, 2019
    Inventors: Marcelo Baru, Andrew B. Kibler
  • Publication number: 20180272133
    Abstract: A device for neurostimulation includes a pulse generator for generating current having pulses and at least one first pair of electrodes connected to the pulse generator. The device provides a user-programmable therapy strength parameter configuration and at least two current parameter configurations for neurostimulation stored in the pulse generator. The current parameter configurations are controlled by the therapy strength configuration, at least one of the current parameter configurations is associated with a level of paresthesia sensation of a patient and at least one of the current parameter configurations is associated with a paresthesia-free therapy for the patient. The association between therapy strength parameter and current parameter configurations uniquely adjusts the current parameter configurations based on paresthesia or paresthesia-free intent, when neurostimulation is performed using parameter configurations.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 27, 2018
    Inventors: ANDREW B. KIBLER, DIRK MUESSIG, MARCELO BARU
  • Publication number: 20180272124
    Abstract: A device for neurostimulation has a number N of electrodes. N is equal to or larger than 3. The device is configured to deliver via each electrode therapeutic electric phases of amplitudes I1, I2, . . . IN, with a frequency f and after each therapeutic electric phase a number of N?1 charge balancing electric phases. The charge balancing electric phases of the respective electrode each have a polarity that is opposite the polarity of the preceding therapeutic electric phase of the respective electrode. The device is configured to return for each electrode the current of each therapeutic electric phase in the other N?1 electrodes.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 27, 2018
    Inventors: ANDREW B. KIBLER, MARCELO BARU, DIRK MUESSIG
  • Publication number: 20180206786
    Abstract: A system for evaluating an efficacy of vagus nerve stimulation is provided, wherein the system has a neurostimulator that is configured to perform vagus nerve stimulation, and a measuring component for evaluating the efficacy based on at least one parameter that is indicative of a myocardial contractile state of the heart. A corresponding method is also provided.
    Type: Application
    Filed: January 24, 2018
    Publication date: July 26, 2018
    Applicant: BIOTRONIK SE & Co. KG
    Inventors: Christopher S. de VOIR, Andrew B. KIBLER, Dirk MUESSIG
  • Publication number: 20180071543
    Abstract: A system and method for installing/implanting a leadless implant can include a leadless implant with shortened tine-based anchors and an implantation tool with a modified tip. The tines can extend from a surface of the leadless implant and may include a preformed curve or other shape to enable the tine to hook into or grapple tissue. The implantation tool may be provided with a modified tip to assist with proper alignment, insertion, and anchoring of the shortened tines. A tip of the implantation tool can have a reduced inner diameter to cause the tine tips to be approximately normal to the surface of the tissue to which the implant is being anchored. Upon deployment of the leadless implant, the tines of the anchoring mechanism are appropriately aligned for proper insertion so that robust anchoring is achieved.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 15, 2018
    Inventors: Brian M. Taff, Dirk Muessig, Jeffrey A. von Arx, Wantjinarjo Suwito, Larry Stotts, Andrew B. Kibler, Eric Austin