Patents by Inventor Andrew Homyk

Andrew Homyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200315543
    Abstract: A system for collecting data for assessment of cardiovascular function includes a plurality of monitoring devices coupled to different respective body parts. Each monitoring device is configured to measure a respective signal at the respective body part in response to cardiovascular activity. The respective signal includes a cardiovascular component attributable to the cardiovascular activity and an artifact component not attributable to the cardiovascular activity. When the monitoring devices measure the respective signals simultaneously over a same time period, the cardiovascular components are correlated, and the artifact components are not correlated.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Andrew Homyk, Jason Donald Thompson
  • Patent number: 10722177
    Abstract: A system for collecting data for assessment of cardiovascular function includes a plurality of monitoring devices coupled to different respective body parts. Each monitoring device is configured to measure a respective signal at the respective body part in response to cardiovascular activity. The respective signal includes a cardiovascular component attributable to the cardiovascular activity and an artifact component not attributable to the cardiovascular activity. When the monitoring devices measure the respective signals simultaneously over a same time period, the cardiovascular components are correlated, and the artifact components are not correlated.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 28, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Homyk, Jason Donald Thompson
  • Patent number: 10709391
    Abstract: Body-mountable devices are provided to detect the presence or status of a tumor in a body by detecting probes associated with circulating cells of the tumor that travel to subsurface vasculature of the body. The probe enters a tumor and associates with cells of the tumor before the cells metastasize. A wearable body-mountable device can be worn for a protracted period of time to detect the probe associated with circulating tumor cells in the vasculature at low concentrations and/or at low rates. A body-mounted device could detect the presence of such released, tumor-cell-associated probes to determine a presence or status of a tumor in the body.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 14, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Alberto Clemente Vitari, Andrew Homyk, Joshua Simon Klein, Marija Pavlovic, Jerrod Joseph Schwartz
  • Patent number: 10640824
    Abstract: Provided herein are methods, systems, kits and compositions for identifying nucleic acids of interest from individual cells. The methods include isolating single cells on electrodes and identifying nucleic acids of interest from the isolated cells by sequencing.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: May 5, 2020
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Ian Peikon, Andrew Homyk
  • Publication number: 20200116673
    Abstract: A device for estimating a mechanical property of a sample is disclosed herein. The device may include a chamber configured to hold the sample; a transmitter configured to transmit a plurality of waveforms, including at least one forcing waveform; and a transducer assembly operatively connected to the transmitter and configured to transform the transmit waveforms into ultrasound waveforms. The transducer assembly can also transmit and receive ultrasound waveforms into and out of the chamber, as well as transform at least two received ultrasound waveforms into received electrical waveforms.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 16, 2020
    Inventors: William F. Walker, F. Scott Corey, Andrew Homyk, Tim Higgins, Francesco Viola, Frank Regan, Elisa Ferrante
  • Publication number: 20200110020
    Abstract: Disclosed herein are systems and methods capable of identifying, tracking, and sorting particles flowing in a channel, for example, a microfluidic channel having a fluid medium. The channel and the fluid medium can have a similar refractive index such that they appear translucent or transparent when illuminated by electromagnetic radiation. The particles can have a refractive index substantially different from that of the channel and the medium, such that the particles interfere with the electromagnetic radiation. A sensor can be disposed adjacent to the channel to record the electromagnetic radiation. The sensor can be used for identifying, tracking, and sorting the particles.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 9, 2020
    Applicant: Verily Life Sciences LLC
    Inventors: Andrew Homyk, Saurabh Vyawahare
  • Publication number: 20200041399
    Abstract: Disclosed herein are systems and methods capable of identifying, tracking, and sorting particles or droplets flowing in a channel, for example, a microfluidic channel having a fluid medium. The channel and the fluid medium can have a similar refractive index such that they appear translucent or transparent when illuminated by electromagnetic radiation. The particles or droplets can have a refractive index substantially different from that of the channel and the medium, such that the particles or droplets interfere with the electromagnetic radiation. A sensor can be disposed adjacent to the channel to record the electromagnetic radiation. The sensor can be attached to a system for identifying, tracking, and sorting the droplets.
    Type: Application
    Filed: August 1, 2019
    Publication date: February 6, 2020
    Applicant: Verily Life Sciences LLC
    Inventors: Saurabh Vyawahare, Supriyo Sinha, Andrew Homyk, Michael Gutierrez
  • Patent number: 10524677
    Abstract: Systems are provided for detecting the flow of blood or other fluids in biological tissue by illuminating the biological tissue with a coherent light source and detecting time-varying patterns of constructive and destructive interference in light received from portions of the biological tissue by an imager. The movement of blood cells and other light-scattering elements in the biological tissue causes transient, short-duration changes in light emitted from portions of the biological tissue proximate to the moving blood cells or other scatterers. High-frequency sampling or other high-bandwidth processing of light intensities detected by an imager could be used to determine the flow of blood or other fluids at a plurality of points in the biological tissue, to detect and/or localize a tumor in the biological tissue, to determine the location, pattern, width, or other properties of vasculature in the biological tissue, or to provide information for some other application(s).
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: January 7, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Homyk, Jason D. Thompson
  • Patent number: 10495613
    Abstract: A device for estimating a mechanical property of a sample is disclosed herein. The device may include a chamber configured to hold the sample; a transmitter configured to transmit a plurality of waveforms, including at least one forcing waveform; and a transducer assembly operatively connected to the transmitter and configured to transform the transmit waveforms into ultrasound waveforms. The transducer assembly can also transmit and receive ultrasound waveforms into and out of the chamber, as well as transform at least two received ultrasound waveforms into received electrical waveforms.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: December 3, 2019
    Assignee: Hemosonics, LLC
    Inventors: William F. Walker, F. Scott Corey, Andrew Homyk, Tim Higgins, Francesco Viola, Frank Regan, Elisa Ferrante
  • Patent number: 10440300
    Abstract: Systems and methods are described that relate to an optical system including an image sensor optically-coupled to at least one nanophotonic element. The image sensor may include a plurality of superpixels. Each respective superpixel of the plurality of superpixels may include at least a respective first pixel and a respective second pixel. The at least one nanophotonic element may have an optical phase transfer function and may include a two-dimensional arrangement of sub-wavelength regions of a first material interspersed within a second material, the first material having a first index of refraction and the second material having a second index of refraction. The nanophotonic element is configured to direct light toward individual superpixels in the plurality of superpixels, and to direct light toward the first or second pixel in each individual superpixel based on a wavelength dependence or a polarization dependence of the optical phase transfer function.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: October 8, 2019
    Assignee: Verily Life Sciences LLC
    Inventors: Eden Rephaeli, Victor Marcel Acosta, Andrew Homyk
  • Patent number: 10429629
    Abstract: Methods and systems are provided to facilitate simultaneous high-resolution microscopic imaging of cells and detection of side-scattered light from such cells using an immersion objective. A container maintains a volume of an immersion oil or other immersion fluid in contact with the immersion objective and with a stage that contains a sample of the cells. The container also includes a window through which the cells can be illuminated off-axis to generate side-scattered light. The side-scattered light can then be detected through the immersion objective. The container maintains the immersion fluid in contact with an internal surface of the window to control the geometry of the optical interface between the off-axis illumination source and the immersion fluid. These systems permit high-throughput identification and imaging of cells for biological research, improvement of side-scatter cell classifiers, improved high-throughput cell sorting, and other applications.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: October 1, 2019
    Assignee: Veily Life Sciences LLC
    Inventors: Michael Brundage, Supriyo Sinha, Andrew Homyk, Saurabh Vyawahare
  • Publication number: 20190231200
    Abstract: Disclosed methods and systems may be operable to obtain non-contact diagnostic information about movements of scattering objects such as fluids in subsurface vasculature in tissue. As an example, a method may include causing a light source to illuminate the tissue with at least a first portion of the emitted light and illuminate an optical modulator with at least a second portion of the emitted light. The second portion of the emitted light may be modulated by the optical modulator. An offset source is configured to provide an offset frequency signal. An image sensor may receive optical information from the sample. A heterodyne signal based on the reference frequency signal and the offset frequency signal may be used as a gain input of each detector element of the image sensor. Based on the received information, a movement of a portion of the sample may be determined.
    Type: Application
    Filed: April 4, 2019
    Publication date: August 1, 2019
    Inventor: Andrew Homyk
  • Patent number: 10338275
    Abstract: Systems and methods are described that relate to a nanophotonic optical system. The nanophotonic optical system may be configured to transmit light in a range of wavelengths. The nanophotonic optical system includes at least one nanophotonic element, which includes a two-dimensional arrangement of sub-wavelength regions of a first material interspersed within a second material, the first and second materials having different indices of refraction. The at least one nanophotonic element includes a surface having a curvature and an optical phase transfer function dependent on the curvature of the surface. The nanophotonic optical system includes an actuator configured to modify the curvature of the surface and a controller. The controller is configured to determine a threshold optical phase transfer function and cause the actuator to modify the curvature of the surface to provide the threshold optical phase transfer function.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 2, 2019
    Assignee: Verily Life Sciences LLC
    Inventors: Victor Marcel Acosta, James Michael Higbie, Supriyo Sinha, Eden Rephaeli, Andrew Homyk, John D. Perreault
  • Publication number: 20190188446
    Abstract: Systems and methods for generating virtually stained images of unstained samples are provided. According to an aspect of the invention, a method includes accessing an image training dataset including a plurality of image pairs. Each image pair includes a first image of an unstained first tissue sample, and a second image acquired when the first tissue sample is stained. The method also includes accessing a set of parameters for an artificial neural network, wherein the set of parameters includes weights associated with artificial neurons within the artificial neural network; training the artificial neural network by using the image training dataset and the set of parameters to adjust the weights; accessing a third image of a second tissue sample that is unstained; using the trained artificial neural network to generate a virtually stained image of the second tissue sample from the third image; and outputting the virtually stained image.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 20, 2019
    Applicant: Verily Life Sciences LLC
    Inventors: Cheng-Hsun Wu, Huang-Wei Chang, James Higbie, Andrew Homyk, Charles Santori
  • Patent number: 10299725
    Abstract: Wearable devices are described herein including at least two photodetectors and a mount configured to mount the at least two photodetectors to an external surface of a wearer. The at least two photodetectors are configured to detect alignment between the wearable device and a target on or in the body of the wearer (e.g., to detect the location of vasculature within the body of the wearer relative to the at least two photodetectors). Alignment of the at least two photodetectors relative to the target could enable detection of one or more physiological properties of the wearer. For example, the wearable device could include a sensor configured to detect a property of the target when the sensor is above the target, and alignment of the target relative to the at least two photodetectors could include the sensor being located above the target.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: May 28, 2019
    Assignee: Verily Life Sciences LLC
    Inventors: Russell Norman Mirov, Andrew Homyk, Mark West Askew, Jason Donald Thompson
  • Patent number: 10292631
    Abstract: Body-mountable devices are provided to detect the presence or status of a tumor in a body by detecting one or more properties of a probe located in subsurface vasculature of the body. A wearable body-mountable device can be worn for a protracted period of time to detect a probe in the vasculature at low concentrations and/or at low rates. A body-mountable device can detect properties of the probe that are indicative of whether the probe has interacted with a tumor of the body and determine the presence or status of a tumor in the body based on such detected properties. Additionally or alternatively, the probe could be introduced into the body as a probe aggregate and released from if the probe aggregate is absorbed by a tumor. The presence of released probes could be detected to determine a presence or status of a tumor in the body.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: May 21, 2019
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Homyk, Jerrod Joseph Schwartz, Alberto Clemente Vitari, Joshua Simon Klein, Mark Audeh
  • Patent number: 10292608
    Abstract: Disclosed methods and systems may be operable to obtain non-contact diagnostic information about movements of scattering objects such as fluids in subsurface vasculature in tissue. As an example, a method may include causing a light source to illuminate the tissue with at least a first portion of the emitted light and illuminate an optical modulator with at least a second portion of the emitted light. The second portion of the emitted light may be modulated by the optical modulator. An offset source is configured to provide an offset frequency signal. An image sensor may receive optical information from the sample. A heterodyne signal based on the reference frequency signal and the offset frequency signal may be used as a gain input of each detector element of the image sensor. Based on the received information, a movement of a portion of the sample may be determined.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 21, 2019
    Assignee: Verily Life Sciences LLC
    Inventor: Andrew Homyk
  • Patent number: 10228366
    Abstract: An engineered particle for detecting analytes in an environment includes an electromagnetic receiver that is configured to preferentially receive electromagnetic radiation of a specified polarization relative to the orientation of the electromagnetic receiver. The engineered particle additionally includes an energy emitter coupled to the electromagnetic receiver such that a portion of electromagnetic energy received by the electromagnetic receiver is transferred to and emitted by the energy emitter. The engineered particles are functionalized to selectively interact with an analyte. The engineered particle can additionally be configured to align with a directed energy field in the environment. The selective reception of electromagnetic radiation of a specified polarization and/or alignment with a directed energy field can enable orientation tracking of individual engineered particles, imaging in high-noise environments, or other applications.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: March 12, 2019
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Homyk, Victor Marcel Acosta, Vikram Singh Bajaj
  • Patent number: 10194808
    Abstract: Wearable devices are described herein including at least two sensors configured to detect hemodynamic properties of a wearer. A first sensor is configured to detect a hemodynamic property of a portion of vasculature, where the operation of the first sensor is based on a hemodynamic property detected by a second sensor. A timing of operation, a value of one or more controlled operational parameters, a filter setting, or some other aspect of the operation of the first sensor could be controlled based on the hemodynamic property detected by the second sensor. Hemodynamic properties could include blood flow rate, volume, and/or pressure in one or more portions of vasculature, a timing, rate, delay, or other information about heartbeats, an oxygenation level of blood, a velocity of blood cells in blood, or some other information about a wearer's blood, heart, and/or cardiovascular system.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: February 5, 2019
    Assignee: Verily Life Sciences LLC
    Inventors: Jason Donald Thompson, Andrew Homyk
  • Patent number: D841184
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: February 19, 2019
    Assignee: HemoSonics LLC
    Inventors: Francesco Viola, Timothy Higgins, Andrew Homyk, F. Scott Corey, Franklin F. Regan, IV, William F. Walker, David Bryant, Thomas Givens