Patents by Inventor Andrew Horch

Andrew Horch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6980457
    Abstract: A thyristor-based semiconductor device is formed having a thyristor, a pass device and an emitter region buried in a substrate and below at least one other vertically-arranged contiguous region of the thyristor that is at least partially below an upper surface of the substrate. According to an example embodiment of the present invention, a conductor, such as a polysilicon pillar formed in a trench, extends through the substrate and to the buried emitter region of the thyristor. In one implementation, a portion of the conductor includes a reduced-resistance material, such as a salicide, that is adapted to reduce the resistance of an electrical connection made to the buried emitter region via the conductor. This is particularly useful, for example, in connecting the buried emitter region to a power supply at a reduced resistance (e.g., as compared to the resistance that would be exhibited, were the reduced-resistance material not present).
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: December 27, 2005
    Assignee: T-RAM, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 6979602
    Abstract: A semiconductor device is formed including a substrate having an upper surface, a thyristor region in the substrate and a control port adapted for capacitively coupling to at least a portion of the thyristor region via a dielectric material. According to an example embodiment of the present invention, a trench is formed in the substrate and subsequently filled with materials including dielectric material and a control port. The control port is adapted for capacitively coupling to the thyristor via the dielectric material for controlling current flow in the thyristor (e.g., for causing an outflow of minority carriers from a portion of the thyristor for switching the thyristor from conducting state to a blocking state). A portion of the substrate adjacent to the upper surface is implanted with a species of ions, and the dielectric material via which the control port capacitively couples to the thyristor does not include the species of ions.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: December 27, 2005
    Assignee: T-RAM, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 6965129
    Abstract: Switching operations, such as those used in memory devices, are enhanced using a thyristor-based semiconductor device adapted to switch between a blocking state and a conducting state. According to an example embodiment of the present invention, a thyristor-based semiconductor device includes a thyristor having first and second base regions coupled between first and second emitter regions, respectively. A first control port capacitively couples a first signal to the first base region, and a second control port capacitively couples a second signal to the second base region. Each of the first and second signals have a charge that is opposite in polarity, and the opposite polarity signals effect the switching of the thyristor at a lower power, relative to the power that would be required to switch the thyristor having only one control port.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: November 15, 2005
    Assignee: T-Ram, Inc.
    Inventors: Andrew Horch, Scott Robins, Farid Nemati
  • Publication number: 20050233506
    Abstract: A method of fabricating a thyristor-based memory may include forming different opposite conductivity-type regions in silicon for defining a thyristor and an access device in series relationship. An activation anneal may activate dopants previously implanted for the different regions. A damaging implant of germanium or xenon or argon may be directed into select regions of the silicon including at least one p-n junction region for the access device and the thyristor. A re-crystallization anneal may then be performed to re-crystallize at least some of the damaged lattice structure resulting from the damaging implant. The re-crystallization anneal may use a temperature less than that of the previous activation anneal.
    Type: Application
    Filed: June 22, 2005
    Publication date: October 20, 2005
    Inventors: Andrew Horch, Hyun-Jin Cho, Farid Nemati, Scott Robins, Rajesh Gupta, Kevin Yang
  • Patent number: 6953953
    Abstract: A thyristor-based semiconductor device includes a filled trench separating and electrically insulating adjacent thyristor control ports. According to an example embodiment of the present invention, the filled trench is formed in a substrate adjacent to at least one thyristor body region. The filled trench includes a conductive filler material, an insulative material formed on the conductive filler material and at least two laterally-adjacent thyristor control ports separated from one another by the conductive filler material and the insulative material. One of the control ports is adapted for capacitively coupling to the thyristor body region for controlling current in the thyristor. With this approach, two or more control ports can be formed in a single filled trench and electrically isolated by the conductive filler material/insulative material combination.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: October 11, 2005
    Assignee: T-RAM, Inc.
    Inventor: Andrew Horch
  • Patent number: 6940772
    Abstract: A reference cell produces a reference current that is about half of the current produced by a memory cell. The reference cell is essentially the same as the memory cell with an additional current reduction device that can be a transistor. Adjusting a reference voltage applied to the transistor allows the reference current to be varied. A control circuit to produce the reference voltage includes dedicated memory and reference cells and a feedback circuit that compares the two cells' currents. The feedback circuit applies the reference voltage to the reference cell of the control circuit and adjusts the reference voltage until the current from the reference cell is about half of the current from the memory cell. The reference voltage is then applied to other reference cells in a memory array.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: September 6, 2005
    Inventors: Andrew Horch, Tapan Samaddar, Scott Robins
  • Patent number: 6913955
    Abstract: A thyristor-based semiconductor device has a control port formed in a trench having a height-to-width aspect ratio that can be prohibitive to filling a bottom portion of the trench with an insulative material. According to an example embodiment of the present invention, a trench is formed in the substrate adjacent to a thyristor region, and a control port is formed near a bottom of the trench. An upper portion of the trench is then filled, thereby covering the control port. The control port is adapted to reduce the aspect ratio of a remaining portion of the trench over the control port, making it possible to fill trenches having a high height-to-width aspect ratio (e.g., at least 2:1). The thyristor control port is capacitively coupled to the thyristor region via a dielectric on a sidewall of the trench, and is configured and arranged to control current in the thyristor body via the capacitive coupling.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: July 5, 2005
    Assignee: T-RAM, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 6911680
    Abstract: A semiconductor memory device having a thyristor is manufactured in a manner that makes possible self-alignment of one or more portions of the thyristor. According to an example embodiment of the present invention, a gate is formed over a first portion of doped substrate. The gate is used to mask a portion of the doped substrate and a second portion of the substrate is doped before or after a spacer is formed. After the second portion of the substrate is doped, the spacer is then formed adjacent to the gate and used to mask the second portion of the substrate while a third portion of the substrate is doped. The gate and spacer are thus used to form self-aligned doped portions of the substrate, wherein the first and second portions form base regions and the third portion form an emitter region of a thyristor.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 28, 2005
    Assignee: T-RAM, Inc.
    Inventors: Andrew Horch, Scott Robins, Farid Nemati
  • Patent number: 6901021
    Abstract: A reference cell produces a reference current that is about half of the current produced by a memory cell. The reference cell is essentially the same as the memory cell with an additional current reduction device that can be a transistor. Adjusting a reference voltage applied to the transistor allows the reference current to be varied. A control circuit to produce the reference voltage includes dedicated memory and reference cells and a feedback circuit that compares the two cell' currents. The feedback circuit applies the reference voltage to the reference cell of the control circuit and adjusts the reference voltage until the current from the reference cell is about half of th current from the memory cell. The reference voltage is then applied to other reference cells in a memory array.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: May 31, 2005
    Assignee: T-Ram, Inc.
    Inventors: Andrew Horch, Tapan Samaddar, Scott Robins
  • Patent number: 6888177
    Abstract: A thyristor-based semiconductor device exhibits a relatively increased base-emitter capacitance. According to an example embodiment of the present invention, the junction area between a base region and an adjacent emitter region of a thyristor is increased, relative to the junction area between other regions in the thyristor. In one implementation, the base region is formed extending on two sides of the emitter region. In another implementation, the thyristor is formed on a buried insulator layer of a silicon-on-insulator (SOI) structure, with the base region having a first portion laterally adjacent to the emitter region and having a second portion between the emitter region and the buried insulator.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: May 3, 2005
    Assignee: T-RAM, Inc.
    Inventors: Farid Nemati, Scott Robins, Andrew Horch
  • Patent number: 6872602
    Abstract: Switching times of a thyristor-based semiconductor device are improved by enhancing carrier drainage from a buried thyristor-emitter region. According to an example embodiment of the present invention, a conductive contact extends to a doped well region buried in a substrate and is adapted to drain carriers therefrom. The device includes a thyristor body having at least one doped emitter region buried in the doped well region. A conductive thyristor control port is adapted to capacitively couple to the thyristor body and to control current flow therein. With this approach, the thyristor can be rapidly switched between resistance states, which has been found to be particularly useful in high-speed data latching implementations including but not limited to memory cell applications.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: March 29, 2005
    Assignee: T-RAM, Inc.
    Inventors: Farid Nemati, Badredin Fatemizadeh, Andrew Horch, Scott Robins
  • Patent number: 6845044
    Abstract: A CMOS memory cell (FIG. 1) is provided which includes a PMOS transistor (102) and an NMOS transistor (104) with a common floating gate and common drains configured to prevent a large drain of Icc current from a power supply during power-up. To prevent the large Icc during power-up, the threshold voltages of the PMOS transistor (102) and NMOS transistor (104) are set so that the PMOS transistor (102) and NMOS transistor (104) do not turn on together, irrespective of charge initially stored on the floating gate. Without such thresholds, a significant drain of current Icc from the power supply connection Vcc can occur since charge initially on the floating gate leaves both the PMOS transistor (102) and the NMOS transistor (104) on creating a path for Icc from Vcc to Vss.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: January 18, 2005
    Assignee: Lattice Semiconductor Corporation
    Inventors: Andrew Horch, Michael Rowlandson
  • Patent number: 6835997
    Abstract: A thyristor-based semiconductor device includes a thyristor body that has at least one region in the substrate and a thyristor control port in a trenched region of the device substrate. According to an example embodiment of the present invention, the trench is at least partially filled with a dielectric material and a control port adapted to capacitively couple to the at least one thyristor body region in the substrate. In a more specific implementation, the dielectric material includes deposited dielectric material that is adapted to exhibit resistance to voltage-induced stress that thermally-grown dielectric materials generally exhibit. In another implementation, the dielectric material includes thermally-grown dielectric material, and when used in connection with highly-doped material in the trench, grows faster on the highly-doped material than on a sidewall of the trench that faces the at least on thyristor body region in the substrate.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: December 28, 2004
    Assignee: T-RAM, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 6828176
    Abstract: A thyristor-based semiconductor device exhibits a relatively increased base-emitter capacitance. According to an example embodiment of the present invention, a base region and an adjacent emitter region of a thyristor are doped such that the emitter region has a lightly-doped portion having a light dopant concentration, relative to the base region. In one embodiment, the thyristor is implemented in a memory circuit, wherein the emitter region is coupled to a reference voltage line and a control port is arranged for capacitively coupling to the thyristor for controlling current flow therein. In another implementation, the thyristor is formed on a buried insulator layer of a silicon-on-insulator (SOI) structure. With these approaches, current flow in the thyristor, e.g., for data storage therein, can be tightly controlled.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: December 7, 2004
    Assignee: T-Ram, Inc.
    Inventors: Farid Nemati, Scott Robins, Andrew Horch
  • Patent number: 6828202
    Abstract: A semiconductor device includes doped regions of a substrate spaced at selected distances from features at an upper surface of the substrate. According to an example embodiment of the present invention, the doped regions are implanted and spaced apart from the features with the height of the features and the angle of an implant used for implanting the doped regions setting the space between the doped regions and the features. In one implementation, the height of the features is varied (e.g., with the features being defined using different steps, such as photolithography) to set the spacing of different doped regions. In another implementation, the angle of the implant is varied to set the spacing for different doped regions. In still another implementation, both the height of the features and angle of the implant are varied to set the spacing for different doped regions.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: December 7, 2004
    Assignee: T-RAM, Inc.
    Inventor: Andrew Horch
  • Patent number: 6818482
    Abstract: A semiconductor device includes a thyristor body having at least one region in a substrate. According to an example embodiment of the present invention, a trench is in a substrate and adjacent to a thyristor body region in the substrate. The trench is lined with an insulative material and further includes conductive material that is insulated from the thyristor body region in the substrate by the liner material. A conductive thyristor control port is located in the trench and adapted for capacitively coupling to the thyristor body region in the substrate and to control current in the thyristor body by causing an outflow of minority carriers in the thyristor. With this approach, conductive material can be used to fill a portion of the trench while using the trench portion including the conductive material to electrically isolate a portion of the thyristor body in the substrate.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: November 16, 2004
    Assignee: T-Ram, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 6815734
    Abstract: A semiconductor device is formed having a thyristor and trench arranged to electrically insulate an emitter region of the thyristor from another circuit structure. In one example embodiment of the present invention, a trench having a bottom portion with two different trench depths is etched in the substrate. A thyristor is formed having a control port in a trench and having an emitter region adjacent to the trench and below an upper surface of the substrate. A deeper portion of the trench electrically insulates the emitter region from the other circuit structure. The control port is capacitively coupled to the thyristor and to the other circuit structure (e.g. in response to at least one edge of a voltage pulse applied thereto). In one implementation, the trench further includes an emitter-access connector extending from the emitter region to an upper surface of the substrate.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: November 9, 2004
    Assignee: T-Ram, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 6790713
    Abstract: A semiconductor device having a thyristor is manufactured and arranged in a manner that reduces or eliminates difficulties commonly experienced in the formation and implementation of such devices. According to an example embodiment of the present invention, a thyristor (e.g., a thin capacitively-coupled thyristor) is formed having some or all of the body of the thyristor formed inlayed in a semiconductor device substrate. A trench is provided in the substrate, and a semiconductor material is formed in the trench. One or more layers of material are formed in the trench and used to form a portion of a body of the thyristor. The thyristor is formed having adjacent regions of different polarity, wherein at least one of the adjacent regions includes a portion of the semiconductor material and at least one of the adjacent regions includes a portion of the substrate.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: September 14, 2004
    Assignee: T-Ram, Inc.
    Inventor: Andrew Horch
  • Patent number: 6781888
    Abstract: A reference cell produces a reference current that is about half of the current produced by a memory cell. The reference cell is essentially the same as the memory cell with an additional current reduction device that can be a transistor. Adjusting a reference voltage applied to the transistor allows the current to be varied. A control circuit to produce the reference voltage includes dedicated memory and reference cells and a feedback circuit that compares the two cells' currents. The feedback circuit applies the reference voltage to the reference cell of the control circuit and adjusts the reference voltage until the current from the reference cell is about half the current of the memory cell. The reference voltage is then applied to other reference cells in a memory array.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: August 24, 2004
    Assignee: T-RAM, Inc.
    Inventors: Andrew Horch, Tapan Samaddar
  • Patent number: 6777271
    Abstract: A semiconductor device includes a thyristor designed to reduce or eliminate manufacturing and operational difficulties commonly experienced in the formation and operation of NDR devices. According to one example embodiment of the present invention, the semiconductor substrate is trenched adjacent a doped or dopable substrate region, which is formed to included at least two vertically-adjacent thyristor regions of different polarity. A capacitively-coupled control port for the thyristor is coupled to at least one of the thyristor regions. The trench also includes a dielectric material for electrically insulating the vertically-adjacent thyristor regions. The thyristor is electrically connected to other circuitry in the device, such as a transistor, and used to form a device, such as a memory cell.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: August 17, 2004
    Assignee: T-Ram, Inc.
    Inventors: Scott Robins, Andrew Horch, Farid Nemati, Hyun-Jin Cho