Patents by Inventor Andrew J. Kellock

Andrew J. Kellock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10971576
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20180076275
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9865673
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9812638
    Abstract: A device has a M8XY6 layer in between a first conductive layer on the top and a second conductive layer on the bottom, wherein (i) M includes at least one element selected from the following: Cu, Ag, Li, and Zn, (ii) X includes at least one Group XIV element, and (iii) Y includes at least one Group XVI element. Another device has MaXbYc material contacted on opposite sides by respective layers of conductive material, wherein: (i) M includes at least one element selected from the following: Cu, Ag, Li, and Zn, (ii) X includes at least one Group XIV element, and (iii) Y includes at least one Group XVI element, and a is in the range of 48-60 atomic percent, b is in the range of 4-10 atomic percent, c is in the range of 30-45 atomic percent, and a+b+c is at least 90 atomic percent.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: November 7, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Donald S Bethune, Kailash Gopalakrishnan, Andrew J Kellock, Rohit S Shenoy
  • Patent number: 9653532
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: July 30, 2016
    Date of Patent: May 16, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160336387
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: July 30, 2016
    Publication date: November 17, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284451
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20160284788
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: June 19, 2015
    Publication date: September 29, 2016
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9437668
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: September 6, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 8830725
    Abstract: A crystalline semiconductor Schottky barrier-like diode sandwiched between two conducting electrodes is in series with a memory element, a word line and a bit line, wherein the setup provides voltage margins greater than 1V and current densities greater than 5×106 A/cm2. This Schottky barrier-like diode can be fabricated under conditions compatible with low-temperature BEOL semiconductor processing, can supply high currents at low voltages, exhibits high on-off ratios, and enables large memory arrays.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Donald S Bethune, Kailash Gopalakrishnan, Andrew J Kellock, Rohit S Shenoy, Kumar R Virwani
  • Patent number: 8404589
    Abstract: A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: March 26, 2013
    Assignees: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Andrew J. Kellock, Christian Lavoie, Ahmet Ozcan, Stephen Rossnagel, Bin Yang, Zhen Zhang, Yu Zhu, Stefan Zollner
  • Publication number: 20130044532
    Abstract: A crystalline semiconductor Schottky barrier-like diode sandwiched between two conducting electrodes is in series with a memory element, a word line and a bit line, wherein the setup provides voltage margins greater than 1V and current densities greater than 5×106 A/cm2. This Schottky barrier-like diode can be fabricated under conditions compatible with low-temperature BEOL semiconductor processing, can supply high currents at low voltages, exhibits high on-off ratios, and enables large memory arrays.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 21, 2013
    Applicant: International Business Machines Corporation
    Inventors: Donald S. Bethune, Kailash Gopalakrishnan, Andrew J. Kellock, Rohit S. Shenoy, Kumar R. Virwani
  • Publication number: 20120301706
    Abstract: A method of depositing a SiNxCy liner on a porous low thermal conductivity (low-k) substrate by plasma-enhanced atomic layer deposition (PE-ALD), which includes forming a SiNxCy liner on a surface of a low-k substrate having pores on a surface thereon, in which the low-k substrate is repeatedly exposed to a aminosilane-based precursor and a plasma selected from nitrogen, hydrogen, oxygen, helium, and combinations thereof until a thickness of the liner is obtained, and wherein the liner is prevented from penetrating inside the pores of a surface of the substrate. A porous low thermal conductivity substrate having a SiNxCy liner formed thereon by the method is also disclosed.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Andrew J. Kellock, Hyungjun Kim, Dae-Gyu Park, Satyanarayana V. Nitta, Sampath Purushothaman, Stephen Rossnagel, Oscar Van Der Straten
  • Publication number: 20110241213
    Abstract: A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBAL FOUNDRIES INC.
    Inventors: Andrew J. Kellock, Christian Lavoie, Ahmet Ozcan, Stephen Rossnagel, Bin Yang, Zhen Zhang, Yu Zhu, Stefan Zollner
  • Publication number: 20110227023
    Abstract: A device is disclosed having a M8XY6 layer sandwiched in between a first conductive layer on the top and a second conductive layer on the bottom, wherein (i) M includes at least one element selected from the group consisting of Cu, Ag, Li, and Zn, (ii) X includes at least one Group XIV element, and (iii) Y includes at least one Group XVI element. Also disclosed is a device comprising: an MaXbYc material contacted on opposite sides by respective layers of conductive material, wherein: (i) M includes at least one element selected from the group consisting of Cu, Ag, Li, and Zn, (ii) X includes at least one Group XIV element, and (iii) Y includes at least one Group XVI element, and wherein a is in the range of 48-60 atomic percent, b is in the range of 4-10 atomic percent, c is in the range of 30-45 atomic percent, and a+b+c is at least 90 atomic percent.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Donald S. Bethune, Kailash Gopalakrishnan, Andrew J. Kellock, Rohit S. Shenoy
  • Patent number: 7918984
    Abstract: A method of electrodepositing germanium compound materials on an exposed region of a substrate structure, which includes forming a plating solution by dissolving at least one germanium salt and at least one salt containing an element other than germanium in water; obtaining a substrate with a clean surface; immersing the substrate in the solution; and electroplating germanium compound materials on the substrate by applying an electrical potential between the substrate and an anode in the plating solution, in which the substrate is included in a semiconductor or phase change device.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventors: Qiang Huang, Andrew J. Kellock, Xiaoyan Shao, Venkatram Venkatasamy
  • Publication number: 20100213073
    Abstract: A bath for electroplating a I-III-VI compound comprising: water; a copper containing precursor dissolved in said water; a selenium containing precursor dissolved in said water; and at least one member selected from the group consisting of an indium containing precursor dissolved in said water, a gallium containing precursor dissolved in said water and mixtures thereof, and at least one member selected from the group consisting of sulfur-containing organic compound dissolved in said water wherein one or more sulfur atoms directly bond with at least one carbon atom, a phosphorus-containing organic compound dissolved in said water wherein one or more phosphorus atoms directly bond with at least one carbon atom and mixtures thereof is provided along with its use to fabricate thin films, solar devices and tuned thin films.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 26, 2010
    Applicant: International Business Machines Corporation
    Inventors: Qiang HUANG, Xiaoyan Shao, Andrew J. Kellock
  • Publication number: 20100055442
    Abstract: A method of depositing a SiNxCy liner on a porous low thermal conductivity (low-k) substrate by plasma-enhanced atomic layer deposition (PE-ALD), which includes forming a SiNxCy liner on a surface of a low-k substrate having pores on a surface thereon, in which the low-k substrate is repeatedly exposed to a aminosilane-based precursor and a plasma selected from nitrogen, hydrogen, oxygen, helium, and combinations thereof until a thickness of the liner is obtained, and wherein the liner is prevented from penetrating inside the pores of a surface of the substrate. A porous low thermal conductivity substrate having a SiNxCy liner formed thereon by the method is also disclosed.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: Andrew J. Kellock, Hyungjun Kim, Dae-Gyu Park, Satyanarayana V. Nitta, Sampath Purushothaman, Stephen Rossnagel, Oscar Van Der Straten
  • Patent number: 7566483
    Abstract: Modified strain regions are created in correlation to strain reactive structures that are subjected to a predetermined dimensional precision adjustment. The modified strain regions are created by impacting incident particles into exposed regions of the strain reactive structures. The irradiation by the incident particles creates a predetermined material disruption and consequently a change in strain energy. The strain energy, and the associated dimensional adjustment is dependent on the irradiation process and the sum properties of the modified strain regions and the strain reactive structure.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: July 28, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: John Edward Eric Baglin, Richard D. Bunch, Linden James Crawforth, Eric W. Flint, Andrew J. Kellock, Timothy Clark Reiley
  • Publication number: 20090071836
    Abstract: A method of electrodepositing germanium compound materials on an exposed region of a substrate structure, which includes forming a plating solution by dissolving at least one germanium salt and at least one salt containing an element other than germanium in water; obtaining a substrate with a clean surface; immersing the substrate in the solution; and electroplating germanium compound materials on the substrate by applying an electrical potential between the substrate and an anode in the plating solution, in which the substrate is included in a semiconductor or phase change device.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 19, 2009
    Applicant: International Business Machines Corporation
    Inventors: Qiang Huang, Andrew J. Kellock, Xiaoyan Shao, Venkatram Venkatasamy