Patents by Inventor Andrew J. Przybyl

Andrew J. Przybyl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10766592
    Abstract: A method for controlling a multi-speed transmission for an engine powering a marine propulsion device on a marine vessel is disclosed. The method is carried out by a control module and includes determining a load of the engine, determining speed of the engine, and determining a pitch of the marine vessel. The method includes switching between a first gear ratio and a second gear ratio of the transmission based on the engine load, the engine speed, and the vessel pitch.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: September 8, 2020
    Assignee: Brunswick Corporation
    Inventors: Andrew J. Przybyl, Justin R. Poirier, David M. Van Buren
  • Patent number: 10723431
    Abstract: A method for controlling marine vessel speed includes determining a setpoint vessel speed, which is constant while the system is operating in a cruise control mode. The method includes using vessel speed feedback control to adjust operational characteristics of the engine so as to achieve the setpoint vessel speed. The method also includes determining a measured vessel speed and filtering the measured vessel speed. In response to determining that the measured vessel speed is within a given range of the constant setpoint vessel speed, the method includes transitioning to the cruise control mode and comparing the filtered measured vessel speed to the constant setpoint vessel speed for purposes of the feedback control.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: July 28, 2020
    Assignee: Brunswick Corporation
    Inventors: Andrew J. Przybyl, Steven J. Andrasko, Justin R. Poirier, Kenneth G. Gable
  • Patent number: 10633072
    Abstract: A method for positioning a marine vessel includes receiving a measured actual position of the vessel and determining a first error between the actual position of the vessel and a desired target position of the vessel. In response to the first error being in a fore/aft direction of the vessel, the method includes commanding a first subset of marine propulsion devices in a plurality of marine propulsion devices to produce thrust to minimize the first error in the fore/aft direction, as appropriate, while a remainder of the marine propulsion devices in the plurality do not produce thrust. The method thereafter includes commanding the first subset of marine propulsion devices to cease producing thrust. The method may also include selecting whether to actuate all marine propulsion devices in the plurality of marine propulsion devices or a first subset thereof based on a magnitude and a direction of the first error.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: April 28, 2020
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Andrew J. Przybyl, Steven J. Andrasko
  • Patent number: 10562602
    Abstract: A marine propulsion system includes an engine-powered propulsion device coupled in torque-transmitting relationship with an engine. A non-engine-powered propulsion device is coupled to a source of electric or hydraulic power. A control module is provided in signal communication with the engine-powered propulsion device and the non-engine-powered propulsion device. A user-operated input device is in signal communication with the control module. The marine propulsion system operates in a non-engine-powered propulsion mode in response to the control module determining the following: the engine was previously running; a speed of the engine is below an engine-stopped speed threshold; the marine propulsion system is on; and a request for movement of the vessel has been input via the user-operated input device.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: February 18, 2020
    Assignee: Brunswick Corporation
    Inventors: Kenneth G. Gable, Andrew J. Przybyl, Steven M. Anschuetz
  • Patent number: 10518856
    Abstract: A trim control system includes a memory storing a plurality of trim profiles, each trim profile defining a unique relationship between a plurality of vessel speeds and respective propulsion device trim angles. The unique relationship is: (a) a calibrated relationship developed by determining optimal trim angles for a particular propulsion device powering a particular marine vessel at a number of tested vessel speeds and a number of different conditions; or (b) developed by modifying a nominal relationship between a number of vessel speeds and a number of corresponding trim angles. An input device allows a user to select one of the trim profiles from the memory so as to specify an aggressiveness of trim angle relative to vessel speed. A controller determines a setpoint trim angle corresponding to measured vessel speed according to the selected trim profile. The control system positions the propulsion device at the setpoint trim angle.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 31, 2019
    Assignee: Brunswick Corporation
    Inventors: Steven J. Andrasko, Michael J. Lemancik, Steven M. Anschuetz, Andrew J. Przybyl, Daniel J. Balogh
  • Patent number: 10436145
    Abstract: A marine engine operates according to first and second sets of mapped parameter values to achieve a first fuel-air equivalence ratio and maintains a stable output torque while transitioning to operating according to third and fourth sets of mapped parameter values to achieve a different fuel-air equivalence ratio. The first and third sets of mapped parameter values correspond to a first combustion parameter. The second and fourth sets correspond to a second combustion parameter. The transition includes: (a) transitioning from operation according to a current value of the first combustion parameter to operation according to a target value thereof; (b) transitioning from operation according to a current value of the second combustion parameter to operation according to a target value thereof; and (c) timing commencement or completion of step (b) and setting a rate of step (b) to counteract torque discontinuity that would otherwise result when performing step (a) alone.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: October 8, 2019
    Assignee: Brunswick Corporation
    Inventors: Steven M. Anschuetz, Andrew J. Przybyl, William P. O'Brien, Matthew W. Snyder, Robert R. Osthelder
  • Patent number: 10429845
    Abstract: A marine vessel is powered by a marine propulsion system and movable with respect to first, second, and third axes that are perpendicular to one another and define at least six degrees of freedom of potential vessel movement. A method for controlling a position of the marine vessel near a target location includes measuring a present location of the marine vessel, and based on the vessel's present location, determining if the marine vessel is within a predetermined range of the target location. The method includes determining marine vessel movements that are required to translate the marine vessel from the present location to the target location. In response to the marine vessel being within the predetermined range of the target location, the method includes automatically controlling the propulsion system to produce components of the required marine vessel movements one degree of freedom at a time during a given iteration of control.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: October 1, 2019
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Steven J. Andrasko, Andrew J. Przybyl
  • Patent number: 10351221
    Abstract: A method for controlling a trim position of a marine propulsion device includes receiving operator demands corresponding to propulsion system operating speeds and determining a rate of change of demand versus time between an initial and a subsequent operator demand. When the rate of change of demand exceeds a predetermined rate, the control module uses successively measured operating speeds of the propulsion system and an offset trim profile to determine setpoint trim positions for the propulsion device. As the propulsion system's measured operating speed increases from an initial to a subsequent operating speed, the control module controls a trim actuator to rotate the propulsion device to the setpoint trim positions. An operating speed at which the propulsion device begins trimming up is less according to the offset trim profile than according to a base trim profile, which is utilized when the rate of change does not exceed the predetermined rate.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: July 16, 2019
    Assignee: Brunswick Corporation
    Inventors: Steven M. Anschuetz, Steven J. Andrasko, Andrew J. Przybyl
  • Patent number: 10343758
    Abstract: A method for controlling a speed of a marine vessel includes accelerating the marine vessel in response to a launch command. The method then includes holding the vessel speed at a desired vessel speed with a controller using feedback control. The controller phases in a derivative term of the feedback control in response to determining that the following conditions are true: (a) the vessel speed is within a given range of the desired vessel speed; and (b) an acceleration rate of the marine vessel is less than a given value.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: July 9, 2019
    Assignee: Brunswick Corporation
    Inventors: Steven J. Andrasko, Andrew J. Przybyl, Steven M. Anschuetz
  • Patent number: 10324468
    Abstract: A method and system for controlling a position of a marine vessel near an object are disclosed. A location sensor determines a location of the marine vessel, and a speed sensor determines a speed of the marine vessel. A control module is in signal communication with the location sensor and the speed sensor. A marine propulsion system is in signal communication with the control module. The control module determines if the marine vessel is within a predetermined range of the object based on the marine vessel's location. In response to determining that the marine vessel is within the predetermined range of the object, the control module controls the propulsion system to produce at least one of a braking linear thrust and a braking moment to counter current movement of the marine vessel.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: June 18, 2019
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Steven J. Andrasko, Andrew J. Przybyl
  • Patent number: 10322786
    Abstract: A method for controlling a marine engine's operating mode includes operating the engine in an initial operating mode according to an initial set of mapped parameter values configured to achieve an initial fuel/air equivalence ratio of an air-fuel mixture for combustion. If measured operating conditions of the engine meet lean-burn mode enablement criteria, the engine is operated in lean-burn mode according to a lean-burn set of mapped parameter values configured to achieve a lean-burn fuel/air equivalence ratio that is less than the initial fuel/air equivalence ratio. If the measured engine operating conditions no longer meet the lean-burn mode enablement criteria, the engine is operated in the initial operating mode. Transitions between the lean-burn mode and the initial operating mode are monitored. If the transitions indicate that the engine's operating mode is unstable, the engine is prevented from operating in the lean-burn mode until after a reset condition has been met.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: June 18, 2019
    Assignee: Brunswick Corporation
    Inventors: Steven M. Anschuetz, Robert R. Osthelder, Andrew J. Przybyl
  • Publication number: 20190155288
    Abstract: A marine vessel is powered by a marine propulsion system and movable with respect to first, second, and third axes that are perpendicular to one another and define at least six degrees of freedom of potential vessel movement. A method for controlling a position of the marine vessel near a target location includes measuring a present location of the marine vessel, and based on the vessel's present location, determining if the marine vessel is within a predetermined range of the target location. The method includes determining marine vessel movements that are required to translate the marine vessel from the present location to the target location. In response to the marine vessel being within the predetermined range of the target location, the method includes automatically controlling the propulsion system to produce components of the required marine vessel movements one degree of freedom at a time during a given iteration of control.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Applicant: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Steven J. Andrasko, Andrew J. Przybyl
  • Publication number: 20190155287
    Abstract: A method and system for controlling a position of a marine vessel near an object are disclosed. A location sensor determines a location of the marine vessel, and a speed sensor determines a speed of the marine vessel. A control module is in signal communication with the location sensor and the speed sensor. A marine propulsion system is in signal communication with the control module. The control module determines if the marine vessel is within a predetermined range of the object based on the marine vessel's location. In response to determining that the marine vessel is within the predetermined range of the object, the control module controls the propulsion system to produce at least one of a braking linear thrust and a braking moment to counter current movement of the marine vessel.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Applicant: Brunswick Corporation
    Inventors: Jason S. Arbuckle, Steven J. Andrasko, Andrew J. Przybyl
  • Publication number: 20190023368
    Abstract: A trim control system includes a memory storing a plurality of trim profiles, each trim profile defining a unique relationship between a plurality of vessel speeds and respective propulsion device trim angles. The unique relationship is: (a) a calibrated relationship developed by determining optimal trim angles for a particular propulsion device powering a particular marine vessel at a number of tested vessel speeds and a number of different conditions; or (b) developed by modifying a nominal relationship between a number of vessel speeds and a number of corresponding trim angles. An input device allows a user to select one of the trim profiles from the memory so as to specify an aggressiveness of trim angle relative to vessel speed. A controller determines a setpoint trim angle corresponding to measured vessel speed according to the selected trim profile. The control system positions the propulsion device at the setpoint trim angle.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 24, 2019
    Applicant: Brunswick Corporation
    Inventors: Steven J. Andrasko, Michael J. Lemancik, Steven M. Anschuetz, Andrew J. Przybyl, Daniel J. Balogh
  • Patent number: 10137971
    Abstract: A trim control system automatically controls trim angle of a marine propulsion device with respect to a vessel. A memory stores trim base profiles, each defining a unique relationship between vessel speed and trim angle. An input device allows selection of a base profile to specify an aggressiveness of trim angle versus vessel speed, and then optionally to further refine the aggressiveness. A controller then determines a setpoint trim angle based on a measured vessel speed. If the user has not chosen to refine the aggressiveness, the controller determines the setpoint trim angle from the selected base profile. However, if the user has chosen to refine the aggressiveness, the controller determines the setpoint trim angle from a trim sub-profile, which defines a variant of the relationship between vessel speed and trim angle defined by the selected base profile. The control system positions the propulsion device at the setpoint trim angle.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: November 27, 2018
    Assignee: Brunswick Corporation
    Inventors: Steven J. Andrasko, Michael J. Lemancik, Steven M. Anschuetz, Andrew J. Przybyl, Daniel J. Balogh
  • Patent number: 10118681
    Abstract: A method for automatically controlling a trim position of a trimmable drive unit with respect to a transom of a marine vessel includes retrieving from a memory a stored level trim position of the drive unit, measuring an actual trim position of the drive unit, and determining with a controller whether an absolute difference between the level trim position and the actual trim position exceeds a given threshold. The method also includes determining whether at least one of a plurality of trim-to-level enable conditions indicative of an idle state of an engine powering the drive unit is true. In response to a determination that the absolute difference exceeds the given threshold and that at least one trim-to-level enable condition is true, the method includes sending a control signal with the controller to trim the drive unit to the level trim position. A system for carrying out the method is provided.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: November 6, 2018
    Assignee: BRUNSWICK CORPORATION
    Inventors: Steven J. Andrasko, Andrew J. Przybyl
  • Patent number: 10094321
    Abstract: Controlling a marine engine includes operating the engine according to an initial set of mapped parameter values to achieve a first target fuel-air equivalence ratio, determining a first actual fuel-air equivalence ratio, and using a feedback controller to minimize a difference between the first target and actual ratios. Feedback controller outputs are used to populate an initial set of adapt values to adjust combustion parameter values from the initial set of mapped parameter values. The method includes transitioning to operating the engine according to a subsequent set of mapped parameter values to achieve a different target fuel-air equivalence ratio. The method includes determining a second actual fuel-air equivalence ratio, using the feedback controller to minimize a difference between the second target and actual ratios, and using feedback controller outputs to populate a subsequent set of adapt values to adjust combustion parameter values from the subsequent set of mapped parameter values.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: October 9, 2018
    Assignee: Brunswick Corporation
    Inventors: Steven M. Anschuetz, Andrew J. Przybyl, William P. O'Brien, Matthew W. Snyder, Robert R. Osthelder
  • Patent number: 10054956
    Abstract: A method of controlling a marine propulsion system includes receiving a roll position measurement signal from a roll sensor measuring roll position of a marine vessel and receiving a steering input. The method includes determining based on the roll position measurement signal and the steering input that the roll position of the marine vessel exceeds a port threshold in a port roll direction where no corresponding steering input is present, and determining based on the roll position measurement signal and the steering input that the roll position of the marine vessel exceeds a starboard threshold in a starboard roll direction where no corresponding steering input is present. A steering compensation is then determined based on the roll position measurement signal, and an actuator is controlled to effectuate the steering compensation to reduce a magnitude of the roll position of the marine vessel.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: August 21, 2018
    Assignee: Brunswick Corporation
    Inventors: Steven M. Anschuetz, Andrew J. Przybyl, Justin R. Poirier
  • Patent number: 9957028
    Abstract: The speed of a marine propulsion system's engine is temporarily elevated in response to a decrease in helm demand. A controller receives a command to decrease the helm demand from a first helm demand to a second helm demand and compares a demand difference between the second helm demand and the first helm demand to a threshold demand delta. In response to the demand difference exceeding the threshold demand delta, the controller tabulates a time since the demand difference exceeded the threshold demand delta and determines an engine speed offset based upon the second helm demand and the time. The controller determines a non-elevated engine speed setpoint corresponding to the second helm demand and calculates an elevated engine speed setpoint based on the non-elevated engine speed setpoint and the engine speed offset. Engine speed is then decreased to the elevated engine speed setpoint.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: May 1, 2018
    Assignee: Brunswick Corporation
    Inventors: William P. O'Brien, Jason S. Arbuckle, Andrew J. Przybyl
  • Patent number: 9919781
    Abstract: Systems and methods disclosed herein control position of a trimmable drive unit with respect to a marine vessel. A controller determines a target trim position as a function of vessel or engine speed. An actual trim position is measured and compared to the target trim position. The controller sends a control signal to a trim actuator to trim the drive unit toward the target trim position if the actual trim position is not equal to the target trim position and if at least one of the following is true: a defined dwell time has elapsed since a previous control signal was sent to the trim actuator to trim the drive unit; a given number of previous control signals has not been exceeded in an attempt to achieve the target trim position; and a difference between the target trim position and the actual trim position is outside of a given deadband.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: March 20, 2018
    Assignee: Brunswick Corporation
    Inventors: Steven J. Andrasko, Andrew J. Przybyl, Steven M. Anschuetz