Patents by Inventor Andrew J. Sherman

Andrew J. Sherman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10870146
    Abstract: The invention is directed to the interventionless activation of wellbore devices using dissolving and/or degrading and/or expanding structural materials. Engineered response materials, such as those that dissolve and/or degrade or expand upon exposure to specific environment, can be used to centralize a device in a wellbore.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: December 22, 2020
    Assignee: Terves, LLC
    Inventor: Andrew J. Sherman
  • Patent number: 10865465
    Abstract: The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: December 15, 2020
    Assignee: Terves, LLC
    Inventors: Andrew J. Sherman, Nicholas Farkas, David Wolf
  • Publication number: 20200385842
    Abstract: The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations.
    Type: Application
    Filed: August 19, 2020
    Publication date: December 10, 2020
    Inventors: Andrew J. Sherman, Nicholas Farkas, David Wolf
  • Publication number: 20200308682
    Abstract: A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m-K, and/or ductility exceeding 15-20% elongation to failure.
    Type: Application
    Filed: March 23, 2020
    Publication date: October 1, 2020
    Inventors: Andrew J. Sherman, Nicholas Farkas
  • Publication number: 20200299819
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contains an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Patent number: 10760151
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: September 1, 2020
    Assignee: Terves, LLC
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Patent number: 10758974
    Abstract: The invention is directed to the interventionless activation of wellbore devices using dissolving and/or degrading and/or expanding structural materials. Engineered response materials, such as those that dissolve and/or degrade or expand upon exposure to specific environment, can be used to centralize a device in a wellbore.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: September 1, 2020
    Assignee: Terves, LLC
    Inventor: Andrew J. Sherman
  • Publication number: 20200254516
    Abstract: The invention is directed to the interventionless activation of wellbore devices using dissolving and/or degrading and/or expanding structural materials. Engineered response materials, such as those that dissolve and/or degrade or expand upon exposure to specific environment, can be used to centralize a device in a wellbore.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventor: Andrew J. Sherman
  • Patent number: 10724128
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: July 28, 2020
    Assignee: Terves, LLC
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Patent number: 10689740
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contains an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 23, 2020
    Assignee: Terves, LLCq
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Publication number: 20200071522
    Abstract: A degradable elastomeric material that is formed from a composite blend of elastomeric particles in a continuous degradable binder. The degradable binder is generally a water-soluble binder which has a temperature dependent solubility in water and brine systems. Such degradable elastomers are particularly useful in the fabrication of degradable oil tools, among other applications.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: Andrew J. Sherman, Brian Doud
  • Patent number: 10544304
    Abstract: A degradable elastomeric material that is formed from a composite blend of elastomeric particles in a continuous degradable binder. The degradable binder is generally a water-soluble binder which has a temperature dependent solubility in water and brine systems. Such degradable elastomers are particularly useful in the fabrication of degradable oil tools, among other applications.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: January 28, 2020
    Assignee: Terves Inc.
    Inventors: Andrew J. Sherman, Brian Doud
  • Publication number: 20190338405
    Abstract: A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m-K, and/or ductility exceeding 15-20% elongation to failure.
    Type: Application
    Filed: July 8, 2019
    Publication date: November 7, 2019
    Inventors: Andrew J. Sherman, Nicholas Farkas
  • Patent number: 10458011
    Abstract: The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.
    Type: Grant
    Filed: December 24, 2017
    Date of Patent: October 29, 2019
    Assignee: Mesocoat, Inc.
    Inventors: Evelina Vogli, Andrew J. Sherman, Curtis P. Glasgow
  • Patent number: 10392314
    Abstract: A high strength engineered reactive matrix composite that includes a core material and a reactive binder matrix combined in high volumes and with controlled spacing and distribution to produce both high strength and controlled reactivity. The engineered reactive matrix composite includes a repeating metal, ceramic, or composite particle core material and a reactive binder/matrix, and wherein the reactive/matrix binder is distributed relatively homogeneously around the core particles, and wherein the reactivity of the reactive binder/matrix is engineered by controlling the relative chemistry and interfacial surface area of the reactive components. These reactive materials are useful for oil and gas completions and well stimulation processes, enhanced oil and gas recovery operations, as well as in defensive and mining applications requiring high energy density and good mechanical properties.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: August 27, 2019
    Assignee: Powdermet, Inc.
    Inventors: Andrew J. Sherman, Brian P. Doud
  • Publication number: 20190233641
    Abstract: A degradable elastomeric material that is formed from a composite blend of elastomeric particles in a continuous degradable binder. The degradable binder is generally a water-soluble binder which has a temperature dependent solubility in water and brine systems. Such degradable elastomers are particularly useful in the fabrication of degradable oil tools, among other applications.
    Type: Application
    Filed: March 26, 2019
    Publication date: August 1, 2019
    Inventors: Andrew J. Sherman, Brian Doud
  • Patent number: 10329653
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: June 25, 2019
    Assignee: Terves Inc.
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Patent number: 10308807
    Abstract: A degradable elastomeric material that is formed from a composite blend of elastomeric particles in a continuous degradable binder. The degradable binder is generally a water-soluble binder which has a temperature dependent solubility in water and brine systems. Such degradable elastomers are particularly useful in the fabrication of degradable oil tools, among other applications.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: June 4, 2019
    Assignee: Terves Inc.
    Inventors: Andrew J. Sherman, Brian Doud
  • Publication number: 20190126349
    Abstract: A structured three-phase composite which include a metal phase, a ceramic phase, and a gas phase that are arranged to create a composite having low thermal conductivity, having controlled stiffness, and a CTE to reduce thermal stresses in the composite when exposed to cyclic thermal loads. The structured three-phase composite is useful for use in structures such as, but not limited to, heat shields, cryotanks, high speed engine ducts, exhaust-impinged structures, and high speed and reentry aeroshells.
    Type: Application
    Filed: August 23, 2018
    Publication date: May 2, 2019
    Inventors: Andrew J. Sherman, Brian Werry
  • Publication number: 20190048448
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contains an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman