Patents by Inventor Andrew J. Sherman

Andrew J. Sherman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190039126
    Abstract: The invention is directed to the interventionless activation of wellbore devices using dissolving and/or degrading and/or expanding structural materials. Engineered response materials, such as those that dissolve and/or degrade or expand upon exposure to specific environment, can be used to centralize a device in a wellbore.
    Type: Application
    Filed: September 12, 2018
    Publication date: February 7, 2019
    Inventor: Andrew J. Sherman
  • Publication number: 20190032173
    Abstract: The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 31, 2019
    Inventors: Andrew J. Sherman, Nicholas Farkas, David Wolf
  • Publication number: 20190023630
    Abstract: A high strength engineered reactive matrix composite that includes a core material and a reactive binder matrix combined in high volumes and with controlled spacing and distribution to produce both high strength and controlled reactivity. The engineered reactive matrix composite includes a repeating metal, ceramic, or composite particle core material and a reactive binder/matrix, and wherein the reactive/matrix binder is distributed relatively homogeneously around the core particles, and wherein the reactivity of the reactive binder/matrix is engineered by controlling the relative chemistry and interfacial surface area of the reactive components. These reactive materials are useful for oil and gas completions and well stimulation processes, enhanced oil and gas recovery operations, as well as in defensive and mining applications requiring high energy density and good mechanical properties.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: Andrew J. Sherman, Brian P. Doud
  • Publication number: 20180305801
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 25, 2018
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Patent number: 10092954
    Abstract: A syntactic metal foam composite that is substantially fully dense except for syntactic porosity is formed from a mixture of ceramic microballoons and matrix forming metal. The ceramic microballoons have a uniaxial crush strength and a much higher omniaxial crush strength. The mixture is continuously constrained while it is consolidated. The constraining force is less than the omniaxial crush strength. The substantially fully dense syntactic metal foam composite is then constrained and deformation worked at a substantially constant volume. This deformation causes at least work hardening and grain refinement in the matrix metal. The resulting deformed syntactic metal foam composite has an energy absorption capacity that is at least 1.5 to 2 or 3 times or more the energy absorption capacity of the precursor substantially fully dense syntactic metal foam composite.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: October 9, 2018
    Assignee: Powdermet, Inc.
    Inventors: Andrew J. Sherman, Brian Doud
  • Publication number: 20180155813
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Application
    Filed: February 5, 2018
    Publication date: June 7, 2018
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Publication number: 20180118634
    Abstract: A high density, generally recognized as safe hybrid rocket motor is described which has a density-specific impulse similar to a solid rocket motor, with good performance approaching or equal to a liquid rocket motor. These high density hybrid motors resolve the packaging efficiency/effectiveness problems limiting the application of safe, low cost hybrid motor technology.
    Type: Application
    Filed: August 30, 2017
    Publication date: May 3, 2018
    Inventors: Andrew J. Sherman, Brian Werry, Andrew Cortopassi, Eric Boyer
  • Publication number: 20180119265
    Abstract: The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.
    Type: Application
    Filed: December 24, 2017
    Publication date: May 3, 2018
    Applicant: MesoCoat, Inc.
    Inventors: Evelina Vogli, Andrew J. Sherman, Curtis P. Glasgow
  • Publication number: 20180078998
    Abstract: The invention is directed to the interventionless activation of wellbore devices using dissolving and/or degrading and/or expanding structural materials. Engineered response materials, such as those that dissolve and/or degrade or expand upon exposure to specific environment, can be used to centralize a device in a wellbore.
    Type: Application
    Filed: October 26, 2017
    Publication date: March 22, 2018
    Inventor: Andrew J. Sherman
  • Patent number: 9903010
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: February 27, 2018
    Assignee: Terves Inc.
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Patent number: 9885100
    Abstract: The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: February 6, 2018
    Assignee: MESOCOAT, INC.
    Inventors: Evelina Vogli, Andrew J. Sherman, Curtis P. Glasgow
  • Publication number: 20180029115
    Abstract: A castable, moldable, or extrudable structure using a metallic base metal or base metal alloy. One or more insoluble additives are added to the metallic base metal or base metal alloy so that the grain boundaries of the castable, moldable, or extrudable structure includes a composition and morphology to achieve a specific galvanic corrosion rates partially or throughout the structure or along the grain boundaries of the structure. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The insoluble particles generally have a submicron particle size. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 1, 2018
    Inventors: Andrew J. Sherman, Brian P. Doud, Nickolas Farkas
  • Publication number: 20170349747
    Abstract: A degradable elastomeric material that is formed from a composite blend of elastomeric particles in a continuous degradable binder. The degradable binder is generally a water-soluble binder which has a temperature dependent solubility in water and brine systems. Such degradable elastomers are particularly useful in the fabrication of degradable oil tools, among other applications.
    Type: Application
    Filed: May 11, 2017
    Publication date: December 7, 2017
    Inventors: Andrew J. Sherman, Brian Doud
  • Publication number: 20170298492
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 19, 2017
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Publication number: 20170268088
    Abstract: A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m?K, and/or ductility exceeding 15-20% elongation to failure.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 21, 2017
    Inventors: Andrew J. Sherman, Nicholas Farkas
  • Publication number: 20170021445
    Abstract: The present invention concerns methods and apparatus for forming a clad product, such as a clad pipe or tube. Particular embodiments include a method for metallurgically bonding cladding material onto a metal substrate, the method including a step of providing a metal substrate comprising a pipe or a tube having a cladding composition arranged along an interior surface of the substrate to form a coated substrate, the interior surface arranged within an interior cavity of the substrate. A further step includes inserting a heat source into an interior cavity of the substrate, the heat source comprising an infrared, microwave, or radio frequency heat source, the heat source being mounted on a heat source-retaining housing, the housing comprising a cantilevered structure. An additional step includes applying heat discharged from the heat source to the coated substrate along the coated interior surface until the cladding composition metallurgically bonds to the substrate.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Applicant: MESOCOAT, INC.
    Inventors: Andrew J. Sherman, P. Greg Engleman, Mario Medanic, Kurt E. Gilbert
  • Patent number: 9486832
    Abstract: The present invention concerns methods and apparatus for forming a clad product, such as a clad pipe or tube. Particular embodiments include a method for metallurgically bonding cladding material onto a metal substrate, the method including a step of providing a metal substrate comprising a pipe or a tube having a cladding composition arranged along an interior surface of the substrate to form a coated substrate, the interior surface arranged within an interior cavity of the substrate. A further step includes inserting a heat source into an interior cavity of the substrate, the heat source comprising an infrared, microwave, or radio frequency heat source, the heat source being mounted on a heat source-retaining housing, the housing comprising a cantilevered structure. An additional step includes applying heat discharged from the heat source to the coated substrate along the coated interior surface until the cladding composition metallurgically bonds to the substrate.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: November 8, 2016
    Assignee: MESOCOAT, INC.
    Inventors: Andrew J. Sherman, P. Greg Engleman, Mario Medanic, Kurt E. Gilbert
  • Publication number: 20160031011
    Abstract: A syntactic metal foam composite that is substantially fully dense except for syntactic porosity is formed from a mixture of ceramic microballoons and matrix forming metal. The ceramic microballoons have a uniaxial crush strength and a much higher omniaxial crush strength. The mixture is continuously constrained while it is consolidated. The constraining force is less than the omniaxial crush strength. The substantially fully dense syntactic metal foam composite is then constrained and deformation worked at a substantially constant volume. This deformation causes at least work hardening and grain refinement in the matrix metal. The resulting deformed syntactic metal foam composite has an energy absorption capacity that is at least 1.5 to 2 or 3 times or more the energy absorption capacity of the precursor substantially fully dense syntactic metal foam composite.
    Type: Application
    Filed: June 26, 2015
    Publication date: February 4, 2016
    Applicant: Powdermet, Inc.
    Inventors: Andrew J. Sherman, Brian Doud
  • Publication number: 20150299838
    Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 22, 2015
    Inventors: Brian P. Doud, Nicholas J. Farkas, Andrew J. Sherman
  • Publication number: 20150259263
    Abstract: A high strength engineered reactive matrix composite that includes a core material and a reactive binder matrix combined in high volumes and with controlled spacing and distribution to produce both high strength and controlled reactivity. The engineered reactive matrix composite includes a repeating metal, ceramic, or composite particle core material and a reactive binder/matrix, and wherein the reactive/matrix binder is distributed relatively homogeneously around the core particles, and wherein the reactivity of the reactive binder/matrix is engineered by controlling the relative chemistry and interfacial surface area of the reactive components. These reactive materials are useful for oil and gas completions and well stimulation processes, enhanced oil and gas recovery operations, as well as in defensive and mining applications requiring high energy density and good mechanical properties.
    Type: Application
    Filed: December 10, 2013
    Publication date: September 17, 2015
    Inventors: Andrew J. Sherman, Brian P. Doud