Patents by Inventor Andrew Larsen

Andrew Larsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11553848
    Abstract: An aspect of the disclosure pertains to a blood pressure measurement device and methods of controlling an inflation rate in a blood pressure measurement. An inflatable bladder of the blood pressure measurement device defines, at least in part, a pressurizable volume. The inflatable bladder may be inflated to pressurize a user's appendage and temporarily occlude blood flow in the user's appendage. A pressure sensor of the blood pressure measurement device is configured to obtain blood pressure measurements, and a pump of the blood pressure measurement device is configured to inflate the inflatable bladder and control an inflation rate by controlling at least one of a duty cycle, a voltage, or a drive frequency.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: January 17, 2023
    Assignee: FITBIT, INC.
    Inventors: Dan Stefan Tudose, Xi Zhang, Keith Adam Wong, Andrew Larsen Axley, Peter W. Richards, Conor Joseph Heneghan, Radu Dobroiu, Alexandru-Mihai Ş olot
  • Publication number: 20220409074
    Abstract: An aspect of the disclosure pertains to detecting a position of a blood pressure measurement device. An inflatable bladder of the blood pressure measurement device defines, at least in part, a pressurizable volume. The inflatable bladder may be inflated to pressurize a user's appendage and temporarily occlude blood flow in the user's appendage. A pump may initiate inflation of the inflatable bladder when one or more accelerometers and/or one or more proximity sensors determine that the blood pressure measurement device is within sufficient proximity or elevation to a user's heart and stationary.
    Type: Application
    Filed: July 8, 2022
    Publication date: December 29, 2022
    Inventors: Xi Zhang, Keith Adam Wong, Andrew Larsen Axley, Dan Stefan Tudose, Conor Joseph Heneghan
  • Publication number: 20220288591
    Abstract: Described herein are systems relating to a continuous-flow instrument that includes all necessary components for digital droplet quantification without the need to introduce key reagents or collect and transfer droplets between stages of instrument operation. Digital quantification can proceed without any additional fluid or consumable handling and without exposing fluids to risk of external contamination.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Cody YOUNGBULL, Andrew HATCH, Andrew LARSEN, Tathagata RAY, Matthew UNDERHILL
  • Patent number: 11413616
    Abstract: Described herein are systems relating to a continuous-flow instrument that includes all necessary components for digital droplet quantification without the need to introduce key reagents or collect and transfer droplets between stages of instrument operation. Digital quantification can proceed without any additional fluid or consumable handling and without exposing fluids to risk of external contamination.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 16, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Cody Youngbull, Andrew Hatch, Andrew Larsen, Tathagata Ray, Matthew Underhill
  • Patent number: 11382522
    Abstract: An aspect of the disclosure pertains to detecting a position of a blood pressure measurement device. An inflatable bladder of the blood pressure measurement device defines, at least in part, a pressurizable volume. The inflatable bladder may be inflated to pressurize a user's appendage and temporarily occlude blood flow in the user's appendage. A pump may initiate inflation of the inflatable bladder when one or more accelerometers and/or one or more proximity sensors determine that the blood pressure measurement device is within sufficient proximity or elevation to a user's heart and stationary.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: July 12, 2022
    Assignee: Fitbit, Inc.
    Inventors: Xi Zhang, Keith Adam Wong, Andrew Larsen Axley, Dan Stefan Tudose, Conor Joseph Heneghan
  • Publication number: 20220193681
    Abstract: Systems and methods for continuous flow polymerase chain reaction (PCR) are provided. The system comprises an injector, a mixer, a coalescer, a droplet generator, a detector, a digital PCR system, and a controller. The injector takes in a sample, partitions the sample into sample aliquots with the help of an immiscible oil phase, dispenses waste, and sends the sample aliquot to the mixer. The mixer mixes the sample aliquot with a PCR master mix and diluting water, dispenses waste, and sends the sample mixture (separated by an immiscible oil) to the coalescer. The coalescer coalesces the sample mixture with primers dispensed from a cassette, dispenses waste, and sends the reaction mixture (separated by an immiscible oil) to the droplet generator. The droplet generator converts the sample mixture into an emulsion where aqueous droplets of the reaction mixture are maintained inside of an immiscible oil phase and dispenses droplets to the digital PCR system.
    Type: Application
    Filed: July 29, 2021
    Publication date: June 23, 2022
    Inventors: Cody YOUNGBULL, Andrew HATCH, Tathagata RAY, Andrew LARSEN, Matthew UNDERHILL
  • Patent number: 11350829
    Abstract: An activity monitoring device, methods and computer readable media are provided. The activity monitoring device includes a housing configured for attachment to a body part of a user and a display screen attached to the housing. Further included is a first sensor disposed in the housing for capturing motion of the activity monitoring device when attached to the body part of the user and a second sensor disposed in the housing for sampling a heart rate of the user. Memory is disposed in the housing for storing the motion captured by the first sensor and the heart rate sampled by the second sensor. A processor is disposed in the housing and is configured to determine a physical state of the user during a period of time. For motion that is below a threshold the processor identifies the physical state to be a sedentary state and for motion that is at or above the threshold the processor identifies the physical state to be an active state.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: June 7, 2022
    Assignee: FITBIT, INC.
    Inventors: Shelten Gee Jao Yuen, James Park, Eric Nathan Friedman, Mark Manuel Martinez, Andrew Larsen Axley
  • Publication number: 20220151502
    Abstract: This disclosure provides devices and methods for estimating blood pressure using intelligent oscillometric blood pressure measurement techniques, where some implementations of the devices include multiple biometric sensors and/or can obtain sensor data from a connected device. In some implementations, the devices automatically determine an identity of a user. In some implementations, the devices automatically provide instructions to users to take blood pressure measurements. In some implementations, the devices applied intelligent inflation techniques to improve user comfort and speed up measurements.
    Type: Application
    Filed: November 22, 2021
    Publication date: May 19, 2022
    Inventors: Logan Niehaus, Andrew Larsen Axley
  • Publication number: 20220113401
    Abstract: A radar-enabled device that manages radar interference. In particular, the radar-enabled device detects a radar signal transmitted by a second radar-enabled device, transmits a notification of the detected radar signal, receives localization information associated with the second radar-enabled device, and sets a device location based on the received localization information. Additionally, the radar-enabled device may adjust a timing of radar signal transmissions to avoid subsequent detections of radar signals transmitted by the second radar-enabled device.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 14, 2022
    Inventors: Andrew Larsen Axley, Eric Michael Monsler, Marci Meingast
  • Publication number: 20210369128
    Abstract: Disclosed are devices and methods for non-invasively measuring arterial stiffness using pulse wave analysis of photoplethysmogram data. In some implementations, wearable biometric monitoring devices provided herein for measuring arterial stiffness have the ability to automatically and intelligently obtain PPG data under suitable conditions while the user is engaged in activities or exercises. In some implementations, wearable biometric monitoring devices are provided herein with the ability to remove PPG data variance caused by factors unrelated to arterial stiffness. In some implementations, wearable biometric monitoring devices have the ability to perform PWA while accounting for the user's activities, conditions, or status.
    Type: Application
    Filed: March 9, 2021
    Publication date: December 2, 2021
    Inventors: Alexandros A. Pantelopoulos, Andrew Larsen Axley
  • Patent number: 11179049
    Abstract: This disclosure provides devices and methods for estimating blood pressure using intelligent oscillometric blood pressure measurement techniques, where some implementations of the devices include multiple biometric sensors and/or can obtain sensor data from a connected device. In some implementations, the devices automatically determine an identity of a user. In some implementations, the devices automatically provide instructions to users to take blood pressure measurements. In some implementations, the devices applied intelligent inflation techniques to improve user comfort and speed up measurements.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: November 23, 2021
    Assignee: Fitbit, Inc.
    Inventors: Logan Niehaus, Andrew Larsen Axley
  • Patent number: 11155792
    Abstract: The present invention is directed to a polymerase activity assay that produces a strong optical signal when a primer-template complex is extended to full-length product. The assay uses Cy3 as the molecular beacon and Iowa Black® RQ as the quencher. The signal-to-noise-ratio (STNR) of this donor-quencher pairing is ˜200-fold over background, which is considerably better than other donor-quencher pairs (STNRs ˜10-20-fold). The STNR allows for solution-based monitoring of polymerase activity. Because the sensor functions via Watson-Crick base pairing, the polymerase activity assay may also be used to evolve polymerases to accept xeno nucleic acids as substrates.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: October 26, 2021
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: John Chaput, Andrew Larsen, Matthew Dunn
  • Patent number: 11123740
    Abstract: Systems and methods for continuous flow polymerase chain reaction (PCR) are provided. The system comprises an injector, a mixer, a coalescer, a droplet generator, a detector, a digital PCR system, and a controller. The injector takes in a sample, partitions the sample into sample aliquots with the help of an immiscible oil phase, dispenses waste, and sends the sample aliquot to the mixer. The mixer mixes the sample aliquot with a PCR master mix and diluting water, dispenses waste, and sends the sample mixture (separated by an immiscible oil) to the coalescer. The coalescer coalesces the sample mixture with primers dispensed from a cassette, dispenses waste, and sends the reaction mixture (separated by an immiscible oil) to the droplet generator. The droplet generator converts the sample mixture into an emulsion where aqueous droplets of the reaction mixture are maintained inside of an immiscible oil phase and dispenses droplets to the digital PCR system.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: September 21, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Cody Youngbull, Andrew Hatch, Tathagata Ray, Andrew Larsen, Matthew Underhill
  • Patent number: 11026592
    Abstract: An aspect of the disclosure pertains to finger blood pressure cuff. The finger blood pressure cuff may include a housing having an opening sized to receive a human finger and an inflatable elastic bladder disposed about an inward-facing surface of the opening. The inflatable elastic bladder may be inflated to pressurize a user's finger and temporarily occlude blood flow in the user's finger. The finger blood pressure cuff may include a pressure sensor for obtaining blood pressure measurements.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 8, 2021
    Assignee: Fitbit, Inc.
    Inventors: Xi Zhang, Keith Adam Wong, Andrew Larsen Axley, Dan Stefan Tudose, Conor Joseph Heneghan
  • Patent number: 10973422
    Abstract: Disclosed are devices and methods for non-invasively measuring arterial stiffness using pulse wave analysis of photoplethysmogram data. In some implementations, wearable biometric monitoring devices provided herein for measuring arterial stiffness have the ability to automatically and intelligently obtain PPG data under suitable conditions while the user is engaged in activities or exercises. In some implementations, wearable biometric monitoring devices are provided herein with the ability to remove PPG data variance caused by factors unrelated to arterial stiffness. In some implementations, wearable biometric monitoring devices have the ability to perform PWA while accounting for the user's activities, conditions, or status.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: April 13, 2021
    Assignee: Fitbit, Inc.
    Inventors: Alexandros A. Pantelopoulos, Andrew Larsen Axley
  • Patent number: 10874308
    Abstract: An aspect of the disclosure pertains to a blood pressure measurement device and methods of obtaining pulse information from a blood pressure measurement. An inflatable bladder defines, at least in part, a pressurizable volume. The inflatable bladder may be inflated to pressurize a user's appendage and temporarily occlude blood flow in the user's appendage, where the inflatable bladder is inflated to a pressure greater than a maximum amplitude pressure from oscillometric data in a pressure profile. The inflatable bladder may be deflated and then re-inflated to a target pressure and held at the target pressure to generate pulse information, or the inflatable bladder may be deflated to the target pressure and held at the target pressure to generate the pulse information.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 29, 2020
    Assignee: Fitbit, Inc.
    Inventors: Xi Zhang, Keith Adam Wong, Andrew Larsen Axley, Dan Stefan Tudose, Conor Joseph Heneghan, Radu Dobroiu, Alexandru-Mihai Şolot
  • Publication number: 20200275844
    Abstract: An activity monitoring device, methods and computer readable media are provided. The activity monitoring device includes a housing configured for attachment to a body part of a user and a display screen attached to the housing. Further included is a first sensor disposed in the housing for capturing motion of the activity monitoring device when attached to the body part of the user and a second sensor disposed in the housing for sampling a heart rate of the user. Memory is disposed in the housing for storing the motion captured by the first sensor and the heart rate sampled by the second sensor. A processor is disposed in the housing and is configured to determine a physical state of the user during a period of time. For motion that is below a threshold the processor identifies the physical state to be a sedentary state and for motion that is at or above the threshold the processor identifies the physical state to be an active state.
    Type: Application
    Filed: February 5, 2020
    Publication date: September 3, 2020
    Inventors: Shelten Gee Jao Yuen, James Park, Eric Nathan Friedman, Mark Manuel Martinez, Andrew Larsen Axley
  • Publication number: 20200190488
    Abstract: The present invention is directed to a polymerase activity assay that produces a strong optical signal when a primer-template complex is extended to full-length product. The assay uses Cy3 as the molecular beacon and Iowa Black® RQ as the quencher. The signal-to-noise-ratio (STNR) of this donor-quencher pairing is ˜200-fold over background, which is considerably better than other donor-quencher pairs (STNRs ˜10-20-fold). The STNR allows for solution-based monitoring of polymerase activity. Because the sensor functions via Watson-Crick base pairing, the polymerase activity assay may also be used to evolve polymerases to accept xeno nucleic acids as substrates.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 18, 2020
    Inventors: John Chaput, Andrew Larsen, Matthew Dunn
  • Publication number: 20200178887
    Abstract: Sleep tracking systems and techniques for monitoring two or more co-sleepers in a single bed are disclosed. Such systems and techniques may incorporate sleeper identification, as well as various non-user-specific aspects. Some implementations may incorporate user-specific or user-tailored alarm functionality.
    Type: Application
    Filed: April 28, 2017
    Publication date: June 11, 2020
    Inventors: Juan Ignacio Correa Ramírez, Conor Joseph Heneghan, Lindsey Michelle Sunden, Lin Yang, Lukas Bielskis, Thomas Samuel Elliot, Benjamin B. Perkins, Priya Vijay Sheth, Jose Roberto Melgoza, Nicholas Adrian Myers, Chris H. Sarantos, Andrew Larsen Axley, Jaydip Das, Samuel Barry Tellman, Man-Chi Liu, Jeffrey Andrew Fisher
  • Publication number: 20200138309
    Abstract: In one embodiment, a data processing method comprises obtaining one or more first photoplethysmography (PPG) signals based on one or more first light sources that are configured to emit light having a first light wavelength corresponding to a green light wavelength; obtaining one or more second PPG signals based on one or more second light sources that are configured to emit light having a second light wavelength corresponding to a red light wavelength, one or more of the first light sources and one or more of the second light sources being co-located; generating an estimated heart rate value based on one or more of the first PPG signals and the second PPG signals; and causing the estimated heart rate value to be displayed via a user interface on a client device.
    Type: Application
    Filed: October 3, 2019
    Publication date: May 7, 2020
    Inventors: Kevin Pu Weekly, Subramaniam Venkatraman, Andrew Larsen Axley, Daniel J. Freschl, Peter W. Richards, Chris H. Sarantos