Patents by Inventor Andrew P. Kramer

Andrew P. Kramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890476
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: February 6, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Publication number: 20220296904
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 22, 2022
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 11369794
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: June 28, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Publication number: 20220023637
    Abstract: According to an embodiment of a method for providing neural stimulation, activity is sensed, and neural stimulation is automatically controlled based on the sensed activity. An embodiment determines periods of rest and periods of exercise using the sensed activity, and applies neural stimulation during rest and withdrawing neural stimulation during exercise. Other embodiments are provided herein.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 11154716
    Abstract: According to an embodiment of a method for providing neural stimulation, activity is sensed, and neural stimulation is automatically controlled based on the sensed activity. An embodiment determines periods of rest and periods of exercise using the sensed activity, and applies neural stimulation during rest and withdrawing neural stimulation during exercise. Other embodiments are provided herein.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 26, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20200384269
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 10799699
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: October 13, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20200261728
    Abstract: In various method embodiments for operating an implantable neural stimulator to deliver a neural stimulation therapy to an autonomic neural target, the method comprises using the implantable neural stimulator to deliver the neural stimulation therapy to the autonomic neural target, and evaluating an evoked response to the neural stimulation bursts. The neural stimulation therapy includes a plurality of neural stimulation bursts where each neural stimulation burst includes a plurality of neural stimulation pulses and successive neural stimulation bursts are separated by a time without neural stimulation pulses. Evaluating the evoked response includes sensing the evoked response to the neural stimulation bursts where sensing the evoked response includes sensing at least one physiological parameter affected by the neural stimulation bursts, comparing the sensed evoked response against a baseline, and determining if the evoked response substantially returns to the baseline between neural stimulation bursts.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Inventors: Andrew P. Kramer, Jason J. Hamann
  • Patent number: 10668287
    Abstract: In various method embodiments for operating an implantable neural stimulator to deliver a neural stimulation therapy to an autonomic neural target, the method comprises using the implantable neural stimulator to deliver the neural stimulation therapy to the autonomic neural target, and evaluating an evoked response to the neural stimulation bursts. The neural stimulation therapy includes a plurality of neural stimulation bursts where each neural stimulation burst includes a plurality of neural stimulation pulses and successive neural stimulation bursts are separated by a time without neural stimulation pulses. Evaluating the evoked response includes sensing the evoked response to the neural stimulation bursts where sensing the evoked response includes sensing at least one physiological parameter affected by the neural stimulation bursts, comparing the sensed evoked response against a baseline, and determining if the evoked response substantially returns to the baseline between neural stimulation bursts.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: June 2, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Andrew P. Kramer, Jason J. Hamann
  • Publication number: 20200038662
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 10549101
    Abstract: A system for use during revascularization includes a catheter having an adjustable balloon for delivery a stent, one or more pacing electrodes for delivering one or more pacing pulses to a patient's heart, and a pacemaker configured to generate the one or more pacing pulses to be delivered to the heart via the one or more pacing electrodes. The one or more pacing pulses are delivered at a rate substantially higher than the patient's intrinsic heart rate without being synchronized to the patient's intrinsic cardiac contractions, and are delivered before, during, or after an ischemic event to prevent or reduce cardiac injury.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: February 4, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Tamara Colette Baynham, Jihong Qu, Joseph M. Pastore, Andrew P. Kramer, Frits W. Prinzen, Ward Y. R. Vanagt, Richard N. Cornelussen
  • Publication number: 20190366095
    Abstract: According to an embodiment of a method for providing neural stimulation, activity is sensed, and neural stimulation is automatically controlled based on the sensed activity. An embodiment determines periods of rest and periods of exercise using the sensed activity, and applies neural stimulation during rest and withdrawing neural stimulation during exercise. Other embodiments are provided herein.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 5, 2019
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 10493280
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: December 3, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 10369367
    Abstract: According to an embodiment of a method for providing neural stimulation, activity is sensed, and neural stimulation is automatically controlled based on the sensed activity. An embodiment determines periods of rest and periods of exercise using the sensed activity, and applies neural stimulation during rest and withdrawing neural stimulation during exercise. Other embodiments are provided herein.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 6, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20180289966
    Abstract: According to an embodiment of a method for providing neural stimulation, activity is sensed, and neural stimulation is automatically controlled based on the sensed activity. An embodiment determines periods of rest and periods of exercise using the sensed activity, and applies neural stimulation during rest and withdrawing neural stimulation during exercise. Other embodiments are provided herein.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 11, 2018
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20180221667
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 10029099
    Abstract: Various aspects of the present subject matter provide a device. In various embodiments, the device comprises a port adapted to connect a lead, a pulse generator connected to the port and adapted to provide a neural stimulation signal to the lead, and a signal processing module connected to the port and adapted to receive and process a nerve traffic signal from the lead into a signal indicative of the nerve traffic. The device includes a controller connected to the pulse generator and the signal processing module. The controller is adapted to implement a stimulation protocol to provide the neural stimulation signal with desired neural stimulation parameters based on the signal indicative of the nerve traffic. Other aspects are provided herein.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: July 24, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, Julia Moffitt
  • Patent number: 9950170
    Abstract: A system embodiment comprises an implantable device including controller circuitry, memory, a transceiver, and a generator configured to generate electrical stimulation to modulate the neural activity. The controller circuitry and the transceiver configured to cooperate to receive, from another device, data corresponding to a user-programmable stimulation pattern and store the data in the memory. The user-programmable pattern includes a programmable pattern of bursts with multiple burst durations and multiple burst interval sequences, and the bursts include pulses with a user-programmable wave morphology. The controller circuitry is operably connected to the memory and the generator to use the data stored in the memory to control generation of the electrical stimulation to provide the user-programmable stimulation pattern that includes the pulses with the user-programmable wave morphology and that includes the multiple burst durations and the multiple burst interval sequences.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: April 24, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 9937350
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: April 10, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20170319855
    Abstract: In various method embodiments for operating an implantable neural stimulator to deliver a neural stimulation therapy to an autonomic neural target, the method comprises using the implantable neural stimulator to deliver the neural stimulation therapy to the autonomic neural target, and evaluating an evoked response to the neural stimulation bursts. The neural stimulation therapy includes a plurality of neural stimulation bursts where each neural stimulation burst includes a plurality of neural stimulation pulses and successive neural stimulation bursts are separated by a time without neural stimulation pulses. Evaluating the evoked response includes sensing the evoked response to the neural stimulation bursts where sensing the evoked response includes sensing at least one physiological parameter affected by the neural stimulation bursts, comparing the sensed evoked response against a baseline, and determining if the evoked response substantially returns to the baseline between neural stimulation bursts.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Andrew P. Kramer, Jason J. Hamann