Patents by Inventor Andrew P. Kramer

Andrew P. Kramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8874211
    Abstract: According to an embodiment of a method for using an implantable device to deliver a hypertension therapy to a patient, an activity level is sensed using the implantable medical device. The implantable device may be programmed with a mapping of the sensed activity level to intensity levels for the hypertension therapy. The method may determine a desired intensity for the hypertension therapy as a function of both a circadian rhythm template and the sensed activity level, and use the implantable device to deliver the hypertension therapy using the desired intensity.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20140316487
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 8868183
    Abstract: An implantable cardiac function management device including a programmable controller can be used to include a user-specifiable therapy control parameter set. The therapy control parameter set may then be configured to include at least one therapy control parameter that is user-configurable to automatically switch from a first parameter value to a second parameter value at a time that occurs between separate user programming sessions of the device. Various attributes of physiological measures may allow for refinement of the parameter sets to adapt to changed conditions of the subject. Methods of use are also presented.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 21, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alok S. Sathaye, Shelley Cazares, Andrew P. Kramer
  • Patent number: 8831724
    Abstract: A cardiac rhythm management system modulates the delivery of pacing and/or autonomic neurostimulation pulses based on heart rate variability (HRV). An HRV parameter being a measure of the HRV is produced to indicate a patient's cardiac condition, based on which the delivery of pacing and/or autonomic neurostimulation pulses is started, stopped, adjusted, or optimized. In one embodiment, the HRV parameter is used as a safety check to stop an electrical therapy when it is believed to be potentially harmful to continue the therapy.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: September 9, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Rodney W. Salo, Gerrard M. Carlson, Andrew P. Kramer, Jiang Ding, Yinghong Yu
  • Patent number: 8831718
    Abstract: Various aspects of the present subject matter relate to a system. Various embodiments of the system comprise at least one port to connect to at least one lead with at least one electrode, at least one stimulator circuit and at least one controller. The at least one stimulator circuit is connected to the at least one port and is adapted to deliver neural stimulation to a neural stimulation target using the at least one electrode. The at least one controller is adapted to determine when another energy discharge other than the neural stimulation to the neural stimulation target is occurring and to prevent delivery of the neural stimulation simultaneously with the other energy discharge. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: September 9, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 8818511
    Abstract: A method and apparatus for selection of one or more ventricular chambers to stimulate for ventricular resynchronization therapy. Intrinsic intracardia electrograms that include QRS complexes, are recorded from a left and right ventricle. A timing relationship between the intrinsic intracardia electrograms recorded from the left and right ventricle is then determined. In one embodiment, the timing relationship is determined using a delay between a left ventricular and a right ventricular sensed intrinsic ventricular depolarizations and a duration interval of one or more QRS complexes. In one embodiment, the duration of QRS complexes is determined from either intracardiac electrograms or from surface ECG recordings. One or more ventricular chambers in which to provide pacing pulses are then selected based on the timing relationship between intrinsic intracardia electrograms recorded from the right and left ventricle, and the duration of one or more QRS complexes.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: August 26, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jiang Ding, Julio C. Spinelli, Yinghong Yu, Andrew P. Kramer
  • Patent number: 8805503
    Abstract: A cardiac rhythm management system modulates the delivery of pacing and/or autonomic neurostimulation pulses based on heart rate variability (HRV). An HRV parameter being a measure of the HRV is produced to indicate a patient's cardiac condition, based on which the delivery of pacing and/or autonomic neurostimulation pulses is started, stopped, adjusted, or optimized. In one embodiment, the HRV parameter is used to evaluate a plurality of parameter values for selecting an approximately optimal parameter value.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Rodney W. Salo, Gerrard M. Carlson, Andrew P. Kramer, Jiang Ding, Yinghong Yu
  • Patent number: 8805494
    Abstract: Various aspects relate to a method. In various embodiments, a therapy of a first therapy type is delivered, and it is identified whether a therapy of a second therapy type is present to affect the therapy of the first therapy type. Delivery of the therapy is controlled based on the presence of the therapy of the second therapy type. Some embodiments deliver the therapy of the first type using one set of parameters in the presence of a therapy of a second type, and deliver the therapy of the first type using another set of parameters when the therapy of the second type is not present. In various embodiments, one of the therapy types includes a cardiac rhythm management therapy, and the other includes a neural stimulation therapy. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Publication number: 20140222100
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 8798747
    Abstract: A cardiac rhythm management (CRM) system includes a non-invasive hemodynamic sensing device and an implantable medical device to sense a hemodynamic signal and derive one or more cardiac performance parameters from the hemodynamic signal. The non-invasive hemodynamic sensing device includes at least a portion configured for external attachment to a body in which the implantable medical device is implanted. The one or more cardiac performance parameters are used for various diagnostic, monitoring, and therapy control purposes.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: August 5, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Andrew P. Kramer, Joseph M. Pastore, Jeffrey E. Stahmann, Rodney W. Salo, Jesse W. Hartley
  • Publication number: 20140207203
    Abstract: Various system embodiments comprise circuitry to determine when an arrhythmia has terminated, and a neural stimulator adapted to temporarily deliver neural stimulation therapy to assist with recovering from the arrhythmia in response to termination of the arrhythmia.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Andrew P. Kramer, Imad Libbus, Jeffrey E. Stahmann
  • Publication number: 20140194952
    Abstract: A neural stimulation system senses autonomic activities and applies neural stimulation to sympathetic and parasympathetic nerves to control autonomic balance. The neural stimulation system is capable of delivering neural stimulation pulses for sympathetic excitation, sympathetic inhibition, parasympathetic excitation, and parasympathetic inhibition.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, Julio C. Spinelli
  • Patent number: 8768456
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: July 1, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 8731666
    Abstract: A method and device for delivering pre-excitation pacing to prevent or reduce cardiac remodeling following a myocardial infarction is described. The pre-excitation pacing is modulated in accordance with an assessment of cardiac function in order to balance the beneficial effects of stress reduction with hemodynamic compromise.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 20, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Rodney W. Salo, Jesse W. Hartley, Andrew P. Kramer, Jeffrey E. Stahmann
  • Patent number: 8731677
    Abstract: Various system embodiments comprise a neural stimulator, a pulse generator, and a controller. The neural stimulator is adapted to generate a neural stimulation signal. The pulse generator is adapted to generate a pacing signal to provide myocardium pacing. The controller is adapted to control the neural stimulator and the pulse generator to provide a cardioprotective conditioning therapy. The conditioning therapy includes neural stimulation to elicit a parasympathetic response and myocardium pacing. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: May 20, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Tamara Colette Baynham, Andrew P. Kramer, Julio C. Spinelli, Jeffrey Ross, Rodney W. Salo
  • Patent number: 8718768
    Abstract: A system and method for recording sensing and pacing events in a cardiac rhythm management device. The method may be particularly useful in assessment of pacing parameters for ventricular resynchronization therapy.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: May 6, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Rene H. Wentkowski, Andrew P. Kramer, James Kalgren
  • Patent number: 8706212
    Abstract: Various system embodiments comprise circuitry to determine when an arrhythmia has terminated, and a neural stimulator adapted to temporarily deliver a neural stimulation therapy to assist with recovering from the arrhythmia in response to termination of the arrhythmia.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: April 22, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David Ternes, Andrew P. Kramer, Imad Libbus, Jeffrey E. Stahmann
  • Patent number: 8694096
    Abstract: A method and system for managing refractory periods in a cardiac rhythm management device configured for biventricular or biatrial sensing. Refractory periods for each channel of the pacemaker are provided by interval timers that are triggered by sensed or paced events in order to prevent misinterpretation of sensing signals.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 8, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Andrew P. Kramer, James O. Gilkerson, Lorenzo DiCarlo, Rene H. Wentkowski
  • Patent number: 8694104
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 8, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 8688211
    Abstract: A neurostimulation device includes an external neurostimulator worn by a patient using a bracing element that braces a portion of the patient's body. The external neurostimulator delivers neurostimulation to modulate a cardiovascular function of the patient. In one embodiment, the external stimulator delivers neurostimulation percutaneously to a stimulation target in the patient's body using at least one percutaneous stimulation electrode having a distal end lodged on or near the stimulation target.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 1, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Anthony V. Caparso, Andrew P. Kramer