Patents by Inventor Andrew P. Nowak

Andrew P. Nowak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9341775
    Abstract: A micro-truss fabricated of thermosetting polymer and toughened with a coating of thermoplastic polymer. In one embodiment the thermosetting polymer micro-truss is immersed in a solution of thermoplastic polymer in an organic solvent. The immersion causes the micro-truss to absorb the thermoplastic polymer solution and to become coated with the thermoplastic polymer solution. Subsequent drying of the micro-truss leaves a coating of thermoplastic polymer on the micro-truss, and a layer of thermosetting polymer into which the thermoplastic polymer has penetrated. In another embodiment a thermoplastic monomer solution is allowed to diffuse into, and coat, the thermosetting polymer micro-truss, and the thermoplastic monomer is subsequently polymerized.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: May 17, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Zak Eckel, Alan J. Jacobsen, Andrew P. Nowak, Sophia S. Yang
  • Patent number: 9337493
    Abstract: This invention provides metal-foam electrodes for batteries and fuel cells. In some variations, an electrode includes a first metal layer disposed on a second metal layer, wherein the first metal layer comprises an electrically conductive, open-cell metal foam with an average cell diameter of about 25 ?m or less. The structure also includes smaller pores between the cells. The electrode forms a one piece monolithic structure and allows thicker electrodes than are possible with current electrode-fabrication techniques. These electrodes are formed from an all-fluidic plating solution. The disclosed structures increase energy density in batteries and power density in fuel cells.
    Type: Grant
    Filed: June 15, 2014
    Date of Patent: May 10, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, John Wang, Andrew P. Nowak
  • Patent number: 9309359
    Abstract: Methods and formulations for modified silicone resins of Formula (I) are presented: The R1, R2, and R3 are each independently selected from a group consisting of H, alkyl, alkenyl, alkynyl, and aryl; n ranges from 1 to 10; m ranges from 1 to 200; and p ranges from 2 to 1,000. The elastomeric materials prepared from modified silicone resins display robust mechanical properties following prolonged exposure to high temperatures (e.g., 316° C. or higher).
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: April 12, 2016
    Assignee: The Boeing Company
    Inventors: Chaoyin Zhou, Andrew P. Nowak, Richard E. Sharp, Wen Li, James E. French
  • Publication number: 20160046769
    Abstract: A composition for forming a microlattice structure includes a photopolymerizable compound and a flame retardant material. A microlattice structure includes a plurality of struts interconnected at a plurality of nodes, the struts including: a copolymer including a reaction product of a photopolymerizable compound and a flame retardant material. A microlattice structure includes a plurality of struts interconnected at a plurality of nodes, the struts including: a polymer including a reaction product of a photopolymerizable compound; and a flame retardant material.
    Type: Application
    Filed: August 13, 2015
    Publication date: February 18, 2016
    Inventors: Sophia S. Yang, Eric C. Clough, Thomas I. Boundy, Andrew P. Nowak, Zak C. Eckel, Alan J. Jacobsen
  • Publication number: 20160009864
    Abstract: Methods and formulations for modified silicone resins of Formula (II) are presented. Formula (II) comprises at least one of each of the following subunits: The R1, R2, R3, R6, R7, R8, R9, R10, R11, R12 and R13 are each independently selected from a group consisting of H, alkyl, alkenyl, alkynyl, and aryl. The X is selected from a group consisting of arylene, transition metal, inorganic oxide, and silsesquioxane. The values oft ranges from 1 to 10, y ranges from 1 to 200 and z ranges from 1 to 1,000. The elastomeric materials prepared from modified silicone resins display robust mechanical properties following prolonged exposure to high temperatures (e.g., 316° C. or higher).
    Type: Application
    Filed: July 11, 2014
    Publication date: January 14, 2016
    Inventors: Chaoyin Zhou, Andrew P. Nowak, Richard E. Sharp, Wen Li, James E. French
  • Publication number: 20160009867
    Abstract: Methods and formulations for modified silicone resins of Formula (I) are presented: The R1, R2, and R3 are each independently selected from a group consisting of H, alkyl, alkenyl, alkynyl, and aryl; n ranges from 1 to 10; m ranges from 1 to 200; and p ranges from 2 to 1,000. The elastomeric materials prepared from modified silicone resins display robust mechanical properties following prolonged exposure to high temperatures (e.g., 316° C. or higher).
    Type: Application
    Filed: July 11, 2014
    Publication date: January 14, 2016
    Inventors: Chaoyin Zhou, Andrew P. Nowak, Richard E. Sharp, Wen Li, James E. French
  • Publication number: 20150284614
    Abstract: Transparent, impact-resistant, anti-icing coatings are disclosed. In some variations, a transparent anti-icing coating comprises: a continuous matrix of a hardened material; asymmetric templates that inhibit wetting of water, wherein the asymmetric templates have a length scale from about 10-300 nanometers; porous voids surrounding the asymmetric templates, wherein the porous voids have a length scale from about 15-500 nanometers; and nanoparticles that inhibit heterogeneous nucleation of water, wherein the nanoparticles have an average size from about 5-50 nanometers. Disclosed coatings have transparencies of 90% or higher light transmission. These coatings utilize lightweight and environmentally benign materials that can be rapidly formed into coatings. A uniform distribution of particles and asymmetric templates throughout the coating allows it to be abraded, yet retain its anti-icing function as well as transparency.
    Type: Application
    Filed: November 7, 2014
    Publication date: October 8, 2015
    Inventors: Adam F. GROSS, Andrew P. NOWAK
  • Patent number: 9105884
    Abstract: A sealed assembly is made using sealant including a deformable spacer to control thickness without adversely impacting elasticity and sealing force. Deformable spacers (e.g., elastomer, polyolefin, etc.) are mixed with an elastomeric precursor material and dispensed onto an assembly component, such as a fuel cell bipolar plate, and the remaining component(s) are assembled by pressing against the deformable spacer to ensure a defined seal thickness. The precursor is cured to form a seal that is further compressed to provide an effective sealing force. The deformable spacers control the thickness of a sealed area and allow use of form-in-place sealing processes.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: August 11, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Richard H. Blunk, Andrew P. Nowak
  • Patent number: 9075312
    Abstract: Monomeric formulations appropriate for creating self-propagating polymer optical waveguides, and methods for their fabrication, are disclosed. Multiple polymer waveguides can be fabricated simultaneously into a three-dimensional micro-truss structure, while avoiding significant polymerization outside the confines of the illuminated region. The formulations described to accomplish this controlled polymerization include species containing one or more unsaturated carbon-carbon bonds capable of being free-radical polymerized in the presence of photoinitiator and either a radical inhibitor species or a solvent, or both. The radical inhibitor and/or solvent are included to minimize heat buildup and thermal decomposition of initiator. This invention enhances the versatility of the chemistry by significantly increasing the number of chemical building blocks available for micro-truss fabrication.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: July 7, 2015
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, Alan J. Jacobsen, Sophia S. Yang
  • Patent number: 9065087
    Abstract: An electrode plate is disclosed. The electrode plate includes a plate having an active area, a feed region in fluid communication with the active region, and a tunnel region in fluid communication with the feed region and a manifold region, an ultralyophobic coating on one or more of at least a portion of the tunnel region, at least a portion of the feed region, and an interface between the tunnel region and the manifold region. Fuel cells using the electrode plate and methods of making electrode plates are also described.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: June 23, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Richard H. Blunk, Robert R. Quiel, Andrew P. Nowak, Daniel W. Gorkiewicz
  • Publication number: 20150158969
    Abstract: Novel segmented polysulfide-polyfluoroether copolymers are disclosed. In particular, a polyurethane segmented copolymer composition is provided, comprising one or more polyurethane/urea hard segments, one or more polysulfide soft segments, one or more polyfluoroether soft segments, isocyanate species or derivatives thereof contained in each of the segments, and one or more curatives. The polysulfide soft segments and the polyfluoroether soft segments are together about 50 wt % to about 95 wt % of the copolymer. The weight ratio of the polysulfide soft segments to the polyfluoroether soft segments is from about 0.1 to about 10. The polyfluoroether soft segments are characterized by a glass-transition temperature of about ?85° C. or lower. These copolymers are useful in elastomers for improved fluid resistance, substrate adhesion, and low-temperature flexibility. These properties are desirable for sealants and other applications.
    Type: Application
    Filed: December 5, 2014
    Publication date: June 11, 2015
    Inventor: Andrew P. NOWAK
  • Publication number: 20150152215
    Abstract: In some variations, the invention provides a curable adhesive formulation comprising a curable liquid precursor capable of frontal polymerization, wherein the liquid precursor comprises a monomer and a polymerization catalyst, and frontal-polymerization-triggering susceptors in contact with, or contained within, the liquid precursor. The susceptors may include conducting and/or magnetic solid particles capable of induction heating in the presence of a remotely applied electromagnetic field. Other variations provide a polymer-curing system comprising a curable liquid precursor, frontal-polymerization-triggering susceptors, and an apparatus configured to remotely produce an alternating electromagnetic field in line-of-sight with the susceptors (but not necessarily in line-of-sight with the liquid precursor), thereby generating induction heating to initiate the frontal polymerization. The susceptors may be about 0.1 wt % to about 50 wt % of the curable formulation.
    Type: Application
    Filed: November 28, 2014
    Publication date: June 4, 2015
    Inventors: Tao XIE, Andrew P. NOWAK, Thomas BOUNDY
  • Publication number: 20150133602
    Abstract: There is provided a method of synthesizing a segmented copolymer that includes mixing one or more ?,? (alpha, omega) amine or ?,? (alpha, omega) hydroxyl terminated polysiloxane first soft segments having an average molecular weight of between about 2500 grams per mole to about 10,000 grams per mole, and one or more diisocyanate species, together to form a first reaction product; mixing the first reaction product and one or more low molecular weight diol or diamine chain extenders each having an average molecular weight of less than 400 grams per mole, together in a solvent to form a segmented copolymer; and, removing the solvent.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: Andrew P. Nowak, Chaoyin Zhou, Richard E. Sharp
  • Patent number: 8957175
    Abstract: There is provided segmented copolymer compositions and methods of making the same. The composition has one or more ?,? (alpha, omega) amine or ?,? (alpha, omega) hydroxyl terminated polysiloxane first soft segments having an average molecular weight of between about 2500 grams per mole to about 10,000 grams per mole. The composition further has one or more diisocyanate species. The composition further has one or more low molecular weight diol or diamine chain extenders each having an average molecular weight of less than 400 grams per mole. The composition has a high flexibility at an environmental temperature of down to about ?100 degrees Celsius, and further has a percent elongation of greater than about 250%, a high tensile strength of greater than about 25 MPa (megapascals), and a single low glass transition temperature (Tg) in a range of from about ?60 degrees Celsius to about ?110 degrees Celsius.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: February 17, 2015
    Assignee: The Boeing Company
    Inventors: Andrew P. Nowak, Chaoyin Zhou, Richard E. Sharp
  • Publication number: 20150044420
    Abstract: A coating includes at least one coating layer containing first particles, second particles, and third particles distributed throughout a cross-linked, continuous polymer matrix. An outer surface of the coating layer includes surfaces of at least first particles extending outward from a top periphery of the polymer matrix. The outer surface exhibits a property of delaying ice formation compared to the coating layer without the first particles. A method includes applying a coating composition in one application step. The one-step coating composition contains first particles, second particles, and third particles in a base containing a polymer. A coating composition includes first particles, second particles, and third particles distributed in a matrix precursor.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 12, 2015
    Applicant: The Boeing Company
    Inventors: Andrew P. Nowak, Adam F. Gross, Elena Sherman, Jill E. Seebergh, Glenn R. Dalby, Douglas H. Berry
  • Patent number: 8906593
    Abstract: Monomeric formulations appropriate for creating self-propagating polymer optical waveguides, and methods for their fabrication, are disclosed. Multiple polymer waveguides can be fabricated simultaneously into a three-dimensional micro-truss structure, while avoiding significant polymerization outside the confines of the illuminated region. The formulations described to accomplish this controlled polymerization include species containing one or more unsaturated carbon-carbon bonds capable of being free-radical polymerized in the presence of photoinitiator and either a radical inhibitor species or a solvent, or both. The radical inhibitor and/or solvent are included to minimize heat buildup and thermal decomposition of initiator. This invention enhances the versatility of the chemistry by significantly increasing the number of chemical building blocks available for micro-truss fabrication.
    Type: Grant
    Filed: September 23, 2012
    Date of Patent: December 9, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, Alan J. Jacobsen, Sophia S. Yang
  • Publication number: 20140329166
    Abstract: A sealed assembly is made using sealant including a deformable spacer to control thickness without adversely impacting elasticity and sealing force. Deformable spacers (e.g., elastomer, polyolefin, etc.) are mixed with an elastomeric precursor material and dispensed onto an assembly component, such as a fuel cell bipolar plate, and the remaining component(s) are assembled by pressing against the deformable spacer to ensure a defined seal thickness. The precursor is cured to form a seal that is further compressed to provide an effective sealing force. The deformable spacers control the thickness of a sealed area and allow use of form-in-place sealing processes.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Richard H. Blunk, Andrew P. Nowak
  • Publication number: 20140272301
    Abstract: Durable, impact-resistant structural coatings with dewetting and anti-icing properties are disclosed. The coatings possess a self-similar structure with two feature sizes that are tuned to affect the wetting of water and freezing of water on the surface. Dewetting and anti-icing performance is simultaneously achieved in a structural coating comprising multiple layers, with each layer including (a) a continuous matrix; (b) porous voids, dispersed within the matrix, to inhibit wetting of water; and (c) nanoparticles, on pore surfaces, that inhibit heterogeneous nucleation of water. These structural coatings utilize low-cost and lightweight materials that can be rapidly sprayed over large areas. If the surface is damaged during use, fresh material will expose a coating surface that is identical to that which was removed, for extended lifetime.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: HRL Laboratories, LLC
    Inventors: Adam F. GROSS, Andrew P. NOWAK, William CARTER
  • Patent number: 8822100
    Abstract: A sealed assembly is made using sealant including a deformable spacer to control thickness without adversely impacting elasticity and sealing force. Deformable spacers (e.g., elastomer, polyolefin, etc.) are mixed with an elastomeric precursor material and dispensed onto an assembly component, such as a fuel cell bipolar plate, and the remaining component(s) are assembled by pressing against the deformable spacer to ensure a defined seal thickness. The precursor is cured to form a seal that is further compressed to provide an effective sealing force. The deformable spacers control the thickness of a sealed area and allow use of form-in-place sealing processes.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: September 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Richard H. Blunk, Andrew P. Nowak
  • Patent number: 8785079
    Abstract: This invention provides metal-foam electrodes for batteries and fuel cells. In some variations, an electrode includes a first metal layer disposed on a second metal layer, wherein the first metal layer comprises an electrically conductive, open-cell metal foam with an average cell diameter of about 25 ?m or less. The structure also includes smaller pores between the cells. The electrode forms a one piece monolithic structure and allows thicker electrodes than are possible with current electrode-fabrication techniques. These electrodes are formed from an all-fluidic plating solution. The disclosed structures increase energy density in batteries and power density in fuel cells.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 22, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, John Wang, Andrew P. Nowak