Patents by Inventor Andrew Philip Woodfield

Andrew Philip Woodfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080193319
    Abstract: An article made of constituent elements is prepared by furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively contain the constituent elements. The constituent elements include a titanium-base metallic composition, boron present at a level greater than its room-temperature solid solubility limit, and, optionally, a stable-oxide-forming additive element present at a level greater than its room-temperature solid solubility limit. The precursor compounds are chemically reduced to produce a material comprising a titanium-base metallic composition having titanium boride particles therein, without melting the titanium-base metallic composition. The titanium-base metallic composition having the titanium boride particles therein is consolidated without melting.
    Type: Application
    Filed: April 18, 2008
    Publication date: August 14, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew Philip WOODFIELD, Eric Allen OTT, Clifford Earl SHAMBLEN, David Alan UTAH, Alan Glen TURNER, Michael Francis Xavier GIGLIOTTI
  • Patent number: 7410610
    Abstract: An article made of constituent elements is prepared by furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively contain the constituent elements. The constituent elements include a titanium-base metallic composition, boron present at a level greater than its room-temperature solid solubility limit, and, optionally, a stable-oxide-forming additive element present at a level greater than its room-temperature solid solubility limit. The precursor compounds are chemically reduced to produce a material comprising a titanium-base metallic composition having titanium boride particles therein, without melting the titanium-base metallic composition. The titanium-base metallic composition having the titanium boride particles therein is consolidated without melting.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 12, 2008
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti, David Alan Utah, Alan Glen Turner
  • Publication number: 20080155802
    Abstract: A method of reducing crack propagation in an airfoil includes: providing an airfoil having a root spaced apart from a tip, spaced-apart leading and trailing edges, a suction side extending from the leading edge to the trailing edge, and an opposed pressure side extending from the leading edge and the trailing edge, supporting the airfoil against bending loads; and burnishing the airfoil using a burnishing element, so as to create at least one burnished section of residual compressive stress, the at least one burnished section being located adjacent the leading edge and spaced from the leading edge by an offset distance selected so as to avoid deformation of the leading edge.
    Type: Application
    Filed: December 30, 2006
    Publication date: July 3, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Alberto Luna, Joshua Leigh Miller, William Terence Dingwell, Michael Jay Brunck, William Lee Imhoff, Paul Moncelle, Dale Robert Lombardo, Andrew Philip Woodfield
  • Patent number: 7384596
    Abstract: A method for preparing a metallic article made of metallic constituent elements includes furnishing a mixture of nonmetallic precursor compounds of the metallic constituent elements. The method further includes chemically reducing the mixture of nonmetallic precursor compounds to produce an initial metallic material, without melting the initial metallic material, and consolidating the initial metallic material to produce a consolidated metallic article, without melting the initial metallic material and without melting the consolidated metallic article.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: June 10, 2008
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 7381366
    Abstract: An electroslag-cold hearth (ESCH) system for refining or producing a desired metal or metal alloy is described. The system includes at least one cold hearth vessel capable of holding a pool of molten liquid metal and an overlying slag layer, and an ingot mold laterally off-set from the cold hearth. A source of raw material, e.g., a feed electrode, is positioned above the cold hearth, and fed into the molten slag in a refining operation. A flow-over dam separates the ingot mold from the cold hearth, preventing the flow of inclusions and other foreign bodies into the ingot mold. In some instances, a non-consumable electrode provides additional thermal energy to the slag. In the production operation, the metal source can be a salt from which the desired metal can be electrochemically extracted. Related methods for refining or producing metals such as titanium alloys are also described.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: June 3, 2008
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jr., Mark Gilbert Benz, Clifford Earl Shamblen, Andrew Philip Woodfield
  • Publication number: 20080124210
    Abstract: A rotor assembly for a turbine is provided. The rotor assembly includes a first portion of a rotor component forged from a first material. The first material is processed using a first process. The rotor assembly also includes a second portion of the rotor component separately forged from a second material that is the same material as the first material. The second portion is processed using a second process and is coupled to the first portion at a first axial position. A method for fabricating a rotor assembly for a turbine is also provided.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 29, 2008
    Inventors: Peter Wayte, Brian Francis Mickle, Andrew Philip Woodfield
  • Patent number: 7329381
    Abstract: A metallic article made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds is chemically reduced to produce an initial metallic material, without melting the initial metallic material. The initial metallic material is consolidated to produce a consolidated metallic article, without melting the initial metallic material and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: February 12, 2008
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen
  • Patent number: 7037463
    Abstract: A metallic article is prepared by first furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively containing the constituent elements of the metallic article in their respective constituent-element proportions. The constituent elements together form a titanium-base alloy having a stable-oxide-forming additive element therein, such as magnesium, calcium, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, and mixtures thereof. The stable-oxide-forming additive element forms a stable oxide in a titanium-based alloy. At least one additive element is present at a level greater than its room-temperature solid solubility limit in the titanium-base alloy. The precursor compounds are chemically reduced to produce an alloy material, without melting the alloy material. The alloy material may be consolidated.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: May 2, 2006
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 7008491
    Abstract: A method for fabricating an article of a titanium-base alloy, such as an alpha-beta titanium gas turbine fan or compressor disk, uses a starting ingot having a thickness of at least about 20 inches, and which is made of a titanium-base alloy having a temperature-composition phase diagram with a beta-phase field and an alpha-beta phase field. The method includes first forging the starting ingot in the beta-phase field to form an in-process billet, thereafter second forging the in-process billet in the alpha-beta phase field, thereafter heating the in-process billet into the beta-phase field to recrystallize the in-process billet, and thereafter third forging the in-process billet. The step of third forging includes forging the in-process billet from a first forging thickness of not less than about 15 inches to a second forging thickness of not more than about 13 inches, at a third-forging temperature of from about 1550° F. to about 1725° F.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 7, 2006
    Assignee: General Electric Company
    Inventor: Andrew Philip Woodfield
  • Patent number: 7001443
    Abstract: A metallic alloy is prepared from a gaseous mixture of at least two non-oxide precursor compounds, wherein the non-oxide precursor compounds collectively comprise the metallic constituents. The mixture of the non-oxide precursor compounds is oxidized to form a solid mixed metallic oxide. The solid mixed metallic oxide is chemically reduced to produce the metallic alloy.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: February 21, 2006
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, William Thomas Carter, Jr.
  • Patent number: 6968990
    Abstract: A metallic alloy made of metallic constituent elements is fabricated and utilized by first furnishing a mixture of nonmetallic precursor compounds of the metallic constituent elements, and thereafter chemically reducing the mixture of nonmetallic precursor compounds to produce a metallic alloy as a metallic alloy powder, without melting the metallic alloy. The metallic alloy powder is applied to a surface of a substrate article, preferably in a coating, joining, or deposition application.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: November 29, 2005
    Assignee: General Electric Company
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen
  • Patent number: 6926754
    Abstract: An article of a base metal alloyed with an alloying element is prepared by mixing a chemically reducible nonmetallic base-metal precursor compound of a base metal and a chemically reducible nonmetallic alloying-element precursor compound of an alloying element to form a compound mixture. The base metal is nickel, cobalt, iron, iron-nickel, or iron-nickel-cobalt. One or more of the alloying elements are thermophysically melt incompatible with the base metal. The method further includes chemically reducing the compound mixture to a metallic superalloy, without melting the metallic superalloy, and thereafter consolidating the metallic superalloy to produce a consolidated metallic article, without melting the metallic superalloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 9, 2005
    Assignee: General Electric Company
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 6926755
    Abstract: An article of aluminum base-metal alloyed with an alloying element is prepared by mixing a chemically reducible nonmetallic base-metal precursor compound of the aluminum base-metal and a chemically reducible nonmetallic alloying-element precursor compound of an alloying element to form a precursor compound mixture. The alloying element may be, but is not necessarily, thermophysically melt incompatible with the aluminum base metal. The method further includes chemically reducing the precursor compound mixture to a metallic alloy, without melting the metallic alloy, and thereafter consolidating the metallic alloy to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 9, 2005
    Assignee: General Electric Company
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 6921510
    Abstract: An article has a metallic matrix made of its constituent elements with a dispersoid distributed therein. The article is prepared by furnishing at least one nonmetallic matrix precursor compound. All of the nonmetallic matrix precursor compounds collectively include the constituent elements of the metallic matrix in their respective constituent-element proportions. A mixture of an initial metallic material and the dispersoid is produced. The matrix precursor compounds are chemically reduced to produce the initial metallic material, without melting the initial metallic material, and the dispersoid is distributed in the initial metallic material. The mixture of the initial metallic material and the dispersoid is consolidated to produce a consolidated article having the dispersoid distributed in the metallic matrix comprising the initial metallic material. The initial metallic material, the dispersoid, and the consolidated article are not melted during the consolidation.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: July 26, 2005
    Assignee: General Electric Company
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti
  • Patent number: 6918974
    Abstract: An alpha-beta titanium alloy workpiece, preferably furnished in the form of a cast ingot, is processed by mechanically working in the beta phase field and in the alpha-beta phase field, and thereafter quenching from the beta phase field. The workpiece is thereafter mechanically worked at a first alpha-beta phase field temperature in the alpha-beta phase field and quenched from the first alpha-beta phase field temperature. The workpiece is thereafter mechanically worked at a second alpha-beta phase field temperature in the alpha-beta phase field, wherein the second alpha-beta phase field temperature is lower than the first alpha-beta phase field temperature, and optionally quenched from the second alpha-beta phase field temperature. The resulting microstructure is a distribution of globularized coarse alpha-phase particles and globularized fine alpha-phase particles in fine transformed beta grains.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: July 19, 2005
    Assignee: General Electric Company
    Inventor: Andrew Philip Woodfield
  • Patent number: 6884279
    Abstract: A metallic article is produced by furnishing one or more nonmetallic precursor compound comprising the metallic constituent element(s), and chemically reducing the nonmetallic precursor compound(s) to produce an initial metallic particle, preferably having a size of no greater than about 0.070 inch, without melting the initial metallic particle. The initial metallic particle is thereafter melted and solidified to produce the metallic article. By this approach, the incidence of chemical defects in the metal article is minimized. The melted-and-solidified metal may be used in the as-cast form, or it may be converted to billet and further worked to the final form.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: April 26, 2005
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott
  • Patent number: 6849229
    Abstract: A method of preparing an article made of a metallic material having its constituent elements includes the steps of furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively include the constituent elements of the metallic material in their respective constituent-element proportions, and thereafter utilizing the nonmetallic precursor compound to produce a metallic injection molded brown article. The nonmetallic precursor compounds may be processed into the metallic material by first chemically reducing them to the metallic material, and then injection molding the metallic material, or first injection molding the nonmetallic precursor compounds and then chemically reducing them to the metallic material.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: February 1, 2005
    Assignee: General Electric Company
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen
  • Publication number: 20040253136
    Abstract: An article of aluminum base-metal alloyed with an alloying element is prepared by mixing a chemically reducible nonmetallic base-metal precursor compound of the aluminum base-metal and a chemically reducible nonmetallic alloying-element precursor compound of an alloying element to form a precursor compound mixture. The alloying element may be, but is not necessarily, thermophysically melt incompatible with the aluminum base metal. The method further includes chemically reducing the precursor compound mixture to a metallic alloy, without melting the metallic alloy, and thereafter consolidating the metallic alloy to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Application
    Filed: June 12, 2003
    Publication date: December 16, 2004
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 6814818
    Abstract: A method for heat treating titanium-alloy articles in a vacuum furnace includes a step of first determining, for a first set of titanium articles in a first vacuum furnace and for a first set of heat treatment conditions, a minimum surface area of the first set of titanium articles associated with an acceptable alpha case formation for the first set of titanium articles. There is a second determining, for a second set of titanium articles in a second vacuum furnace and for a second set of heat treatment conditions, of a minimum surface area of a second set of titanium articles associated with an acceptable alpha case formation for the second set of titanium articles, responsive to the value of the minimum surface area of the first set of titanium articles.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 9, 2004
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Thomas Froats Broderick, Reed Roeder Corderman
  • Publication number: 20040211293
    Abstract: A martensitic steel metallic article (20) made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds is chemically reduced to produce a metallic martensitic steel, without melting the metallic martensitic steel. The metallic martensitic steel is consolidated to produce a consolidated metallic article (20), without melting the metallic martensitic steel and without melting the consolidated metallic article (20).
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti