Patents by Inventor Andrew Philip Woodfield

Andrew Philip Woodfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040208773
    Abstract: A method for preparing an article of a base metal alloyed with an alloying element includes the steps of preparing a compound mixture by the steps of providing a chemically reducible nonmetallic base-metal precursor compound of a base metal, providing a chemically reducible nonmetallic alloying-element precursor compound of an alloying element, and thereafter mixing the base-metal precursor compound and the alloying-element precursor compound to form a compound mixture. The compound mixture is thereafter reduced to a metallic alloy, without melting the metallic alloy. The step of preparing or the step of chemically reducing includes the step of adding an other additive constituent. The metallic alloy is thereafter consolidated to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Application
    Filed: May 17, 2004
    Publication date: October 21, 2004
    Applicant: General Electric Comapny
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti
  • Publication number: 20040159185
    Abstract: A metallic article made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds contains more of a base-metal element, such as nickel, cobalt, iron, iron-nickel, and iron-nickel-cobalt than any other metallic element. The mixture of nonmetallic precursor compounds is chemically reduced to produce a metallic superalloy material, without melting the metallic superalloy material. The metallic superalloy material is consolidated to produce a consolidated metallic article, without melting the metallic superalloy material and without melting the consolidated metallic article.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 19, 2004
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Publication number: 20040146640
    Abstract: A metallic alloy made of metallic constituent elements is fabricated and utilized by first furnishing a mixture of nonmetallic precursor compounds of the metallic constituent elements, and thereafter chemically reducing the mixture of nonmetallic precursor compounds to produce a metallic alloy as a metallic alloy powder, without melting the metallic alloy. The metallic alloy powder is applied to a surface of a substrate article, preferably in a coating, joining, or deposition application.
    Type: Application
    Filed: January 23, 2003
    Publication date: July 29, 2004
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Cliford Earl Shamblen
  • Publication number: 20040141869
    Abstract: An article has a metallic matrix made of its constituent elements with a dispersoid distributed therein. The article is prepared by furnishing at least one nonmetallic matrix precursor compound. All of the nonmetallic matrix precursor compounds collectively include the constituent elements of the metallic matrix in their respective constituent-element proportions. A mixture of an initial metallic material and the dispersoid is produced. The matrix precursor compounds are chemically reduced to produce the initial metallic material, without melting the initial metallic material, and the dispersoid is distributed in the initial metallic material. The mixture of the initial metallic material and the dispersoid is consolidated to produce a consolidated article having the dispersoid distributed in the metallic matrix comprising the initial metallic material. The initial metallic material, the dispersoid, and the consolidated article are not melted during the consolidation.
    Type: Application
    Filed: January 22, 2003
    Publication date: July 22, 2004
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti
  • Publication number: 20040118247
    Abstract: A metallic article is prepared by first furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively containing the constituent elements of the metallic article in their respective constituent-element proportions. The constituent elements together form a titanium-base alloy having a stable-oxide-forming additive element therein, such as magnesium, calcium, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, and mixtures thereof. The stable-oxide-forming additive element forms a stable oxide in a titanium-based alloy. At least one additive element is present at a level greater than its room-temperature solid solubility limit in the titanium-base alloy. The precursor compounds are chemically reduced to produce an alloy material, without melting the alloy material. The alloy material may be consolidated.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Publication number: 20040118245
    Abstract: An article made of a metallic material having its constituent elements is made by furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively include the constituent elements of the metallic material in their respective constituent-element proportions. The precursor compounds are chemically reduced to produce particles comprising the metallic material, without melting the precursor compounds and without melting the metallic material. The particles may be consolidated into a rod, which may be used as a welding rod in a welding operation. Alternatively, the nonmetallic precursor compounds may be consolidated prior to the chemical reduction.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen
  • Publication number: 20040120841
    Abstract: A method of preparing an article made of a metallic material having its constituent elements includes the steps of furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively include the constituent elements of the metallic material in their respective constituent-element proportions, and thereafter utilizing the nonmetallic precursor compound to produce a metallic injection molded brown article. The nonmetallic precursor compounds may be processed into the metallic material by first chemically reducing them to the metallic material, and then injection molding the metallic material, or first injection molding the nonmetallic precursor compounds and then chemically reducing them to the metallic material.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen
  • Publication number: 20040118246
    Abstract: A metallic alloy is prepared from a gaseous mixture of at least two non-oxide precursor compounds, wherein the non-oxide precursor compounds collectively comprise the metallic constituents. The mixture of the non-oxide precursor compounds is oxidized to form a solid mixed metallic oxide. The solid mixed metallic oxide is chemically reduced to produce the metallic alloy.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, William Thomas Carter
  • Publication number: 20040115085
    Abstract: A metallic alloy having at least two metallic constituents is produced by first furnishing at least two non-oxide compounds, wherein the non-oxide compounds collectively comprise each of the metallic constituents, and wherein each of the non-oxide compounds is soluble in a mutual solvent. The method further includes dissolving the non-oxide compounds in the mutual solvent to produce a solution containing the metallic constituents, thereafter heating the solution to remove the mutual solvent and oxidize the metallic constituents to produce a mixed metallic oxide, thereafter cooling the mixed metallic oxide to form a substantially homogeneous mixed metallic oxide solid mass, and thereafter chemically reducing the mixed metallic oxide solid mass to produce a metallic alloy. The metallic alloy may be consolidated or otherwise processed.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventors: James Dale Steibel, Andrew Philip Woodfield
  • Patent number: 6737017
    Abstract: An article of a base metal alloyed with an alloying element is prepared by mixing a chemically reducible nonmetallic base-metal precursor compound of a base metal and a chemically reducible nonmetallic alloying-element precursor compound of an alloying element to form a compound mixture. The alloying element is preferably thermophysically melt incompatible with the base metal. The method further includes chemically reducing the compound mixture to a metallic alloy, without melting the metallic alloy, and thereafter consolidating the metallic alloy to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: May 18, 2004
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott
  • Publication number: 20040089380
    Abstract: A method for fabricating an article of a titanium-base alloy, such as an alpha-beta titanium gas turbine fan or compressor disk, uses a starting ingot having a thickness of at least about 20 inches, and which is made of a titanium-base alloy having a temperature-composition phase diagram with a beta-phase field and an alpha-beta phase field. The method includes first forging the starting ingot in the beta-phase field to form an in-process billet, thereafter second forging the in-process billet in the alpha-beta phase field, thereafter heating the in-process billet into the beta-phase field to recrystallize the in-process billet, and thereafter third forging the in-process billet. The step of third forging includes forging the in-process billet from a first forging thickness of not less than about 15 inches to a second forging thickness of not more than about 13 inches, at a third-forging temperature of from about 1550° F. to about 1725° F.
    Type: Application
    Filed: November 12, 2002
    Publication date: May 13, 2004
    Inventor: Andrew Philip Woodfield
  • Publication number: 20040084117
    Abstract: A method for heat treating titanium-alloy articles in a vacuum furnace includes a step of first determining, for a first set of titanium articles in a first vacuum furnace and for a first set of heat treatment conditions, a minimum surface area of the first set of titanium articles associated with an acceptable alpha case formation for the first set of titanium articles. There is a second determining, for a second set of titanium articles in a second vacuum furnace and for a second set of heat treatment conditions, of a minimum surface area of a second set of titanium articles associated with an acceptable alpha case formation for the second set of titanium articles, responsive to the value of the minimum surface area of the first set of titanium articles.
    Type: Application
    Filed: October 30, 2002
    Publication date: May 6, 2004
    Inventors: Andrew Philip Woodfield, Thomas Froats Broderick, Reed Roeder Corderman
  • Publication number: 20040035509
    Abstract: An alpha-beta titanium alloy workpiece, preferably furnished in the form of a cast ingot, is processed by mechanically working in the beta phase field and in the alpha-beta phase field, and thereafter quenching from the beta phase field. The workpiece is thereafter mechanically worked at a first alpha-beta phase field temperature in the alpha-beta phase field and quenched from the first alpha-beta phase field temperature. The workpiece is thereafter mechanically worked at a second alpha-beta phase field temperature in the alpha-beta phase field, wherein the second alpha-beta phase field temperature is lower than the first alpha-beta phase field temperature, and optionally quenched from the second alpha-beta phase field temperature. The resulting microstructure is a distribution of globularized coarse alpha-phase particles and globularized fine alpha-phase particles in fine transformed beta grains.
    Type: Application
    Filed: August 26, 2002
    Publication date: February 26, 2004
    Inventor: Andrew Philip Woodfield
  • Publication number: 20040016319
    Abstract: A metallic article is produced by furnishing one or more nonmetallic precursor compound comprising the metallic constituent element(s), and chemically reducing the nonmetallic precursor compound(s) to produce an initial metallic particle, preferably having a size of no greater than about 0.070 inch, without melting the initial metallic particle. The initial metallic particle is thereafter melted and solidified to produce the metallic article. By this approach, the incidence of chemical defects in the metal article is minimized. The melted-and-solidified metal may be used in the as-cast form, or it may be converted to billet and further worked to the final form.
    Type: Application
    Filed: July 25, 2002
    Publication date: January 29, 2004
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott
  • Publication number: 20030231974
    Abstract: An article of a base metal alloyed with an alloying element is prepared by mixing a chemically reducible nonmetallic base-metal precursor compound of a base metal and a chemically reducible nonmetallic alloying-element precursor compound of an alloying element to form a compound mixture. The alloying element is preferably thermophysically melt incompatible with the base metal. The method further includes chemically reducing the compound mixture to a metallic alloy, without melting the metallic alloy, and thereafter consolidating the metallic alloy to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Application
    Filed: June 14, 2002
    Publication date: December 18, 2003
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott
  • Publication number: 20030230170
    Abstract: A metallic article made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds is chemically reduced to produce an initial metallic material, without melting the initial metallic material. The initial metallic material is consolidated to produce a consolidated metallic article, without melting the initial metallic material and without melting the consolidated metallic article.
    Type: Application
    Filed: June 14, 2002
    Publication date: December 18, 2003
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen