Patents by Inventor Andrew R. Barron

Andrew R. Barron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170001170
    Abstract: The present disclosure pertains to materials for CO2 adsorption at pressures above 1 bar, where the materials include a porous carbon material with a surface area of at least 2800 m2/g, a total pore volume of at least 1.35 cm3/g, and a carbon content of 80%-95%. The porous carbon material is prepared by heating organic polymer precursors or biological materials in the presence of KOH at 700° C.-800° C. The present disclosure also pertains to materials for the separation of CO2 from natural gas at partial pressures above 1 bar, where the material includes a porous carbon material with a surface area of at least 2000 m2/g, a total pore volume of at least 1.00 cm3/g, and a carbon content of greater than 90%. The porous carbon materials can be prepared by heating organic polymer precursors or biological materials in the presence of KOH at 600° C.-700° C.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 5, 2017
    Applicants: William Marsh Rice University, Apache Corporation
    Inventors: Saunab Ghosh, Andrew R. Barron, Jason Ho
  • Publication number: 20160263150
    Abstract: Various embodiments of the present disclosure pertain to methods of optimizing a treatment efficacy of a biological system by tuning a property of the biological system through the addition of an optimizing agent to the biological system. The tuning can include: (a) determining a property parameter of the biological system; (b) selecting an optimizing agent to be added to the biological system based on the determined property parameter; and (c) adding the optimizing agent to the biological system. The optimizing agent can include a kosmotropic material. The biological system can include a tissue, such as a tumor. The methods of the present disclosure can be utilized to enhance the efficacy of various treatments, such as the heat treatment of a biological system exposed to a radiofrequency field. The methods of the present disclosure can also include a step of treating the biological system.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 15, 2016
    Applicants: Baylor College of Medicine, William Marsh Rice University
    Inventors: Nadia C. Lara, Andrew R. Barron, Stuart Corr, Steven Curley
  • Publication number: 20160163652
    Abstract: The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Applicants: William Marsh Rice University, Natcore Technology, Inc.
    Inventors: Andrew R. Barron, Dennis J. Flood, Elizabeth Whitsitt
  • Patent number: 9290665
    Abstract: The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: March 22, 2016
    Assignees: WILLIAM MARSH RICE UNIVERSITY, NATCORE TECHNOLOGY, INC.
    Inventors: Andrew R. Barron, Dennis J. Flood, Elizabeth Whitsitt
  • Patent number: 9242876
    Abstract: Various aspects of the present invention pertain to porous membranes that comprise: (1) a plurality of pores with pore sizes of more than about 0.1 ?m in diameter; and (2) a plurality of hydrophilic molecules. Additional aspects of the present invention pertain to methods of separating organic compounds from a liquid sample by: (1) providing the porous membrane; and (2) flowing the liquid sample through the porous membrane in order to retain organic compounds on the porous membrane. Further aspects of the present invention pertain to systems for separating organic compounds from a liquid sample. Such systems comprises: (1) the porous membrane; and (2) a flowing unit that enables the liquid sample to flow through the porous membrane. Additional aspects of the present invention pertain to methods of making the above-described porous membranes by: (1) coating a surface of a porous membrane containing 0.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: January 26, 2016
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Samuel J. Maguire-Boyle
  • Publication number: 20150284626
    Abstract: The present invention relates to a plurality of proppants, wherein at least a portion of the proppants are immobile proppants and are immobile in a proppant pack. The proppants, pre-aggregated proppants, immobile proppants, or any combination thereof can be used for fracking of a well for hydrocarbon recovery. A method of producing, immobilizing, localizing, or any combination thereof a plurality of proppants is provided by the present invention. The present invention also provides a method of immobilizing proppants including flowing a plurality of proppants into a subterranean location, and fusing the plurality of proppants to each other, to a subterranean surface, or a combination thereof to immobilize the plurality of proppants. The fusing can be accomplished using a chemical reaction, physical interaction, cross-linking, polymerization, microwave sintering, surface diffusion, magnetism, colloid destabilization, mechanical entanglement, interlocking, in-situ dimpling, or any combination thereof.
    Type: Application
    Filed: October 18, 2013
    Publication date: October 8, 2015
    Applicant: Oxane Materials, Inc.
    Inventors: Andrew R. Barron, Christopher E. Coker, Steven Florio
  • Patent number: 9034085
    Abstract: A composition of matter, and method to make same, for a nano-based material including a nanocarbon support to which is attached an aliphatic amine. In particular, the composition of matter is an aliphatic amine-nanocarbon material that includes a nanocarbon (NC) support, such as C60, nano-graphite, graphene, nanocarbon ribbons, graphite intercalation compounds, graphite oxide, nano-coal, nanohorns, and combinations thereof, and further includes an aliphatic amine, such as polyethyleneimine (PEI).
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 19, 2015
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Eoghan Dillon
  • Patent number: 8913686
    Abstract: A computationally feasible encoding and decoding arrangement and method for transmission of data over an additive white Gaussian noise channel with average codeword power constraint employs sparse superposition codes. The code words are linear combinations of subsets of vectors from a given dictionary, with the possible messages indexed by the choice of subset. An adaptive successive decoder is shown to be reliable with error probability exponentially small for all rates below the Shannon capacity.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: December 16, 2014
    Assignee: Yale University
    Inventors: Andrew R. Barron, Antony Joseph
  • Publication number: 20140291241
    Abstract: Components, systems, and methods for producing highly hydrophilitic, functionalized inorganic filtration membranes, pre-treating organic and biological-containing waste waters for minimal membrane fouling and scaling when processed using such functionalized membranes, and use of such functionalized membranes of the present invention in filtration systems for separating such pre-treated waste waters, all with respect to optimal permeate production rates, purity of permeate and resistance to fouling and scale formation on the membranes.
    Type: Application
    Filed: November 19, 2013
    Publication date: October 2, 2014
    Inventors: Waymon R. Votaw, JR., Jacob L. Davis, Edward E. Munson, Andrew R. Barron, Samuel J. Maguire-Boyle
  • Publication number: 20140103255
    Abstract: A composition of matter, and method to make same, for a nano-based material including a nanocarbon support to which is attached an aliphatic amine. In particular, the composition of matter is an aliphatic amine-nanocarbon material that includes a nanocarbon (NC) support, such as C60, nano-graphite, graphene, nanocarbon ribbons, graphite intercalation compounds, graphite oxide, nano-coal, nanohorns, and combinations thereof, and further includes an aliphatic amine, such as polyethyleneimine (PEI).
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: William Marsh Rice University
    Inventors: Andrew R. Barron, Eoghan Dillon
  • Patent number: 8636830
    Abstract: A composition of matter, and method to make same, for a nano-based material including a nanocarbon support to which is attached an aliphatic amine. In particular, the composition of matter is an aliphatic amine-nanocarbon material that includes a nanocarbon (NC) support, such as C60, nano-graphite, graphene, nanocarbon ribbons, graphite intercalation compounds, graphite oxide, nano-coal, nanohorns, and combinations thereof, and further includes an aliphatic amine, such as polyethyleneimine (PEI).
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: January 28, 2014
    Assignee: William Marsh Rice University
    Inventors: Andrew R. Barron, Eoghan Dillon
  • Patent number: 8603578
    Abstract: The present invention relates to proppants which can be used to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the proppants.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Oxane Materials, Inc.
    Inventors: Russell James Smith, John R. Loscutova, Elizabeth A. Whitsitt, Christopher E. Coker, Andrew R. Barron, Mark Wiesner, Stephen A. Costantino, Rajendra K. Bordia
  • Patent number: 8575548
    Abstract: A transport of plasmonic particles through a mineral formation is analyzed by flowing a plasmonic particles solution through an immobile phase (e.g., a mineral formation), determining an absorbance of the plasmonic particles solution subsequent to flowing the plasmonic particles solution through the immobile phase, comparing the determined absorbance of the plasmonic particles solution with an absorbance of the plasmonic particles solution determined previous to flowing the plasmonic particles solution through the immobile phase, and determining an absorbance of the plasmonic particles to the immobile phase as a function of the comparison. The plasmonic particles solution may be produced by dissolving or suspending plasmonic particles in a mobile phase. Flowing the plasmonic particles solution through the immobile phase may include injecting the plasmonic particles solution into the immobile phase, and then flushing the plasmonic particles solution through the immobile phase.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 5, 2013
    Assignee: William Marsh Rice University
    Inventors: Andrew R. Barron, Samuel J. Maguire-Boyle, Alvin White Orbaek
  • Patent number: 8562935
    Abstract: The present invention is directed towards methods (processes) of providing large quantities of carbon nanotubes (CNTs) of defined diameter and chirality (i.e., precise populations). In such processes, CNT seeds of a pre-selected diameter and chirality are grown to many (e.g., hundreds) times their original length. This is optionally followed by cycling some of the newly grown material back as seed material for regrowth. Thus, the present invention provides for the large-scale production of precise populations of CNTs, the precise composition of such populations capable of being optimized for a particular application (e.g., hydrogen storage). The present invention is also directed to complexes of CNTs and transition metal catalyst precurors, such complexes typically being formed en route to forming CNT seeds.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 22, 2013
    Assignee: William Marsh Rice University
    Inventors: Robert H. Hauge, Andrew R. Barron, James M. Tour, Howard K. Schmidt, W. Edward Billups, Christopher A. Dyke, Valerie C. Moore, Elizabeth Whitsitt, Robin E. Anderson, Ramon Colorado, Jr., Michael P. Stewart, Douglas C. Ogrin, Irene M. Marek
  • Publication number: 20130272444
    Abstract: A computationally feasible encoding and decoding arrangement and method for transmission of data over an additive white Gaussian noise channel with average codeword power constraint employs sparse superposition codes. The code words are linear combinations of subsets of vectors from a given dictionary, with the possible messages indexed by the choice of subset. An adaptive successive decoder is shown to be reliable with error probability exponentially small for all rates below the Shannon capacity.
    Type: Application
    Filed: May 9, 2011
    Publication date: October 17, 2013
    Applicant: YALE UNIVERSITY
    Inventors: Andrew R. Barron, Antony Joseph
  • Publication number: 20130168543
    Abstract: A transport of plasmonic particles through a mineral formation is analyzed by flowing a plasmonic particles solution through an immobile phase (e.g., a mineral formation), determining an absorbance of the plasmonic particles solution subsequent to flowing the plasmonic particles solution through the immobile phase, comparing the determined absorbance of the plasmonic particles solution with an absorbance of the plasmonic particles solution determined previous to flowing the plasmonic particles solution through the immobile phase, and determining an absorbance of the plasmonic particles to the immobile phase as a function of the comparison. The plasmonic particles solution may be produced by dissolving or suspending plasmonic particles in a mobile phase. Flowing the plasmonic particles solution through the immobile phase may include injecting the plasmonic particles solution into the immobile phase, and then flushing the plasmonic particles solution through the immobile phase.
    Type: Application
    Filed: June 2, 2011
    Publication date: July 4, 2013
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Samuel J. Maguire-Boyle, Alvin W. Orbaek
  • Patent number: 8361349
    Abstract: A nanoparticle coated with a semiconducting material and a method for making the same. In one embodiment, the method comprises making a semiconductor coated nanoparticle comprising a layer of at least one semiconducting material covering at least a portion of at least one surface of a nanoparticle, comprising: (A) dispersing the nanoparticle under suitable conditions to provide a dispersed nanoparticle; and (B) depositing at least one semiconducting material under suitable conditions onto at least one surface of the dispersed nanoparticle to produce the semiconductor coated nanoparticle. In other embodiments, the nanoparticle comprises a fullerene. Further embodiments include the semiconducting material comprising CdS or CdSe.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: January 29, 2013
    Assignees: William Marsh Rice University, Natcore Technology Inc.
    Inventors: Andrew R. Barron, Dennis J. Flood, John Ryan Loscutova
  • Patent number: 8298667
    Abstract: The present invention relates to proppants which can be used to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the proppants.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: October 30, 2012
    Assignee: Oxane Materials
    Inventors: Russell J. Smith, John R. Loscutova, Elizabeth A. Whitsitt, Christopher E. Coker, Andrew R. Barron, Mark Wiesner, Stephen A. Costantino, Rajendra K. Bordia
  • Publication number: 20120261343
    Abstract: Various aspects of the present invention pertain to porous membranes that comprise: (1) a plurality of pores with pore sizes of more than about 0.1 ?m in diameter; and (2) a plurality of hydrophilic molecules. Additional aspects of the present invention pertain to methods of separating organic compounds from a liquid sample by: (1) providing the porous membrane; and (2) flowing the liquid sample through the porous membrane in order to retain organic compounds on the porous membrane. Further aspects of the present invention pertain to systems for separating organic compounds from a liquid sample. Such systems comprises: (1) the porous membrane; and (2) a flowing unit that enables the liquid sample to flow through the porous membrane. Additional aspects of the present invention pertain to methods of making the above-described porous membranes by: (1) coating a surface of a porous membrane containing 0.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Samuel J. Maguire-Boyle
  • Publication number: 20120181020
    Abstract: Proppants having added functional properties are provided, as are methods that use the proppants to track and trace the characteristics of a fracture in a geologic formation. Information obtained by the methods can be used to design a fracturing job, to increase conductivity in the fracture, and to enhance oil and gas recovery from the geologic formation. The functionalized proppants can be detected by a variety of methods utilizing, for example, an airborne magnetometer survey, ground penetrating radar, a high resolution accelerometer, a geophone, nuclear magnetic resonance, ultra-sound, impedance measurements, piezoelectric activity, radioactivity, and the like. Methods of mapping a subterranean formation are also provided and use the functionalized proppants to detect characteristics of the formation.
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Applicant: OXANE MATERIALS, INC.
    Inventors: Andrew R. Barron, Robert D. Skala, Christopher E. Coker, Dilip K. Chatterjee, Yuming Xie