Patents by Inventor Andrew T. Koch

Andrew T. Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113974
    Abstract: Mobile management method, system and client. Method includes receiving a DNS query for a host name from an application on client; retrieving reputation data associated with host name from a local cache on client; and determining a policy based on host name and the reputation data. Based on determined policy for the host name, blocking attempted network flows to a host corresponding to host name to produce blocked attempted network flows. Method also includes sending attempted network flow metadata related to the blocked attempted network flows to a collector on client; transmitting the attempted network flow metadata from the collector to a VPN server pool via a VPN tunnel; and producing an anomaly report from the transmitted attempted network flow metadata. The anomaly report includes at least one of anomalies, cohorts, trends, location boundaries, detected network security issues, detected compromised clients and/or optimized network usage.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 4, 2024
    Applicant: MOBILE SONIC, INC.
    Inventors: Joseph T. SAVARESE, Steven HECKT, Michael E. BRYANT, Eric C. MCNEILL, Carter SMITH, Elizabeth KIHSLINGER, Thomas Gunther HELMS, Camilla KEENAN-KOCH, Joseph G. SOUZA, Paul HOOVER, S. Aaron STAVENS, Christian E. HOFSTAEDTER, Jonathan SCOTT, Erik OLSON, James Scott SIMPKINS, Stephen Gregory FALLIN, John Harvey HILLOCK, Eivind NAESS, Michael Lee SNYDER, David Michael MIRLY, Marius LEE, Glenn Patrick ARANAS, Norman C. HAMER, Tridib DUTTA, Andrew James HOOVER, Thomas A. SWEET, Mark ANACKER, An PHAN
  • Patent number: 11205564
    Abstract: Disclosed embodiments include vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronics device includes a cathode and an anode. At least one focus grid is disposed between the cathode and the anode, and the at least one focus grid is physically disconnected from the cathode. The at least one acceleration grid is disposed between the cathode and the anode, and the at least one acceleration grid is further disposed adjacent the at least one focus grid. The at least one acceleration grid is physically disconnected from the cathode.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: December 21, 2021
    Assignee: MODERN ELECTRON, INC.
    Inventors: Stephen E. Clark, Richard M. Gorski, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker
  • Publication number: 20210111011
    Abstract: Various disclosed embodiments include thermionic energy converters and electronic circuitry for generating pulses for igniting plasma in a hermetic package of a thermionic energy converter. In various embodiments, an illustrative thermionic energy converter includes a hermetic package charged with a non-cesium gas additive. The hermetic package is configured to route into the hermetic package pulses for igniting plasma in the hermetic package. A cesium reservoir is disposed in the hermetic package. A cathode is disposed in the hermetic package and an anode is disposed in the hermetic package.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 15, 2021
    Inventors: Stephen E. Clark, Roelof E. Groenewald, Arvind Kannan, Andrew T. Koch, Hsin-I Lu, Alexander J. Pearse, Peter J. Scherpelz
  • Patent number: 10811212
    Abstract: Disclosed embodiments include vacuum electronic devices and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronic device includes an electrode that defines discrete support structures therein. A first film layer is disposed on the electrode about a periphery of the electrode and on the support structures. A second film layer is disposed on the first film layer. The second film layer includes electrically conductive grid lines patterned therein that are supported by and suspended between the support structures.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: October 20, 2020
    Assignee: Modern Electron, LLC
    Inventors: Max N. Mankin, Chloe A. M. Fabien, Gary D. Foley, Andrew T. Koch, William Kokonaski, Andrew R. Lingley, Tony S. Pan, Yong Sun
  • Patent number: 10720297
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a first film layer disposed on the electrode about a periphery of the electrode; and a second film layer disposed on the first film layer, the second film layer including a plurality of electrically conductive grid lines patterned therein that are supported only at the periphery of the electrode by the first film layer.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 21, 2020
    Assignee: Modern Electron, Inc.
    Inventors: Yong Sun, Andrew T. Koch, Andrew R. Lingley, Chloe A. M. Fabien, Max N. Mankin, Tony S. Pan
  • Patent number: 10658144
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a plurality of grid supports disposed on the electrode, each of the plurality of grid supports having a first width; and a plurality of grid lines, each of the plurality of grid lines being supported on an associated one of the plurality of grid supports, each of the plurality of grid lines having a second width that is wider than the first width.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 19, 2020
    Assignee: Modern Electron, LLC
    Inventors: Stephen E. Clark, Chloe A. M. Fabien, Gary D. Foley, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker, Peter J. Scherpelz, Yong Sun, Chuteng Zhou
  • Publication number: 20200075286
    Abstract: Disclosed embodiments include vacuum electronic devices and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronic device includes an electrode that defines discrete support structures therein. A first film layer is disposed on the electrode about a periphery of the electrode and on the support structures. A second film layer is disposed on the first film layer. The second film layer includes electrically conductive grid lines patterned therein that are supported by and suspended between the support structures.
    Type: Application
    Filed: August 13, 2019
    Publication date: March 5, 2020
    Applicant: Modern Electron, LLC
    Inventors: Max N. Mankin, Chloe A. M. Fabien, Gary D. Foley, Andrew T. Koch, William Kokonaski, Andrew R. Lingley, Tony S. Pan, Yong Sun
  • Publication number: 20190371582
    Abstract: Disclosed embodiments include vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronics device includes a cathode and an anode. At least one focus grid is disposed between the cathode and the anode, and the at least one focus grid is physically disconnected from the cathode. The at least one acceleration grid is disposed between the cathode and the anode, and the at least one acceleration grid is further disposed adjacent the at least one focus grid. The at least one acceleration grid is physically disconnected from the cathode.
    Type: Application
    Filed: May 22, 2018
    Publication date: December 5, 2019
    Applicant: Modern Electron, LLC
    Inventors: Stephen E. Clark, Richard M. Gorski, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Liu, Max N. Mankin, Tony S. Pan, Jason M. Parker
  • Patent number: 10483073
    Abstract: The present disclosure relates to methods of fabricating electronic devices or components thereof. The electronic devices can be vacuum electronic devices. The methods can include disposing a first material on or in a substrate. The methods can further include removing a portion of the first material to form one or more structure protruding from the substrate. The methods can further include disposing a second material onto the one or more structure of the first material, and then removing a portion of the second material to form one or more sidewall structures. A second portion of the one or more structures of the first material can also be removed to form a fabricated structure including the substrate and one or more sidewall structures protruding therefrom.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 19, 2019
    Assignee: Elwha LLC
    Inventors: Andrew T. Koch, Andrew R. Lingley, Max N. Mankin, Tony S. Pan
  • Publication number: 20190341216
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a first film layer disposed on the electrode about a periphery of the electrode; and a second film layer disposed on the first film layer, the second film layer including a plurality of electrically conductive grid lines patterned therein that are supported only at the periphery of the electrode by the first film layer.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Applicant: Modern Electron, LLC
    Inventors: Yong Sun, Andrew T. Koch, Andrew R. Lingley, Chloe A. M. Fabien, Max N. Mankin, Tony S. Pan
  • Patent number: 10424455
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a first film layer disposed on the electrode about a periphery of the electrode; and a second film layer disposed on the first film layer, the second film layer including a plurality of electrically conductive grid lines patterned therein that are supported only at the periphery of the electrode by the first film layer.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: September 24, 2019
    Assignee: Modern Electron, LLC
    Inventors: Yong Sun, Andrew T. Koch, Andrew R. Lingley, Chloe A. M. Fabien, Max N. Mankin, Tony S. Pan
  • Patent number: 10210007
    Abstract: Techniques are disclosed for performing input/output (I/O) requests to two or more physical adapters in parallel. An address for at least a first page associated with a virtual I/O request is mapped to an entry in a virtual translation control entry (TCE) table. A plurality of physical adapters required to service the virtual I/O request are identified. Upon determining, in each of the identified physical adapters, that an entry in the respective physical TCE table corresponding to the physical adapter is available, for each of the identified physical adapters, the entry in the virtual TCE table is mapped to an entry in the respective physical TCE table corresponding to the physical adapter, and a physical I/O request corresponding to each physical TCE table entry is issued to the respective physical adapter.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andrew T. Koch, Kyle A. Lucke, Nicholas J. Rogness, Steven E. Royer
  • Publication number: 20190043685
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a plurality of grid supports disposed on the electrode, each of the plurality of grid supports having a first width; and a plurality of grid lines, each of the plurality of grid lines being supported on an associated one of the plurality of grid supports, each of the plurality of grid lines having a second width that is wider than the first width.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 7, 2019
    Applicant: Modern Electron, LLC
    Inventors: Stephen E. Clark, Chloe A. M. Fabien, Gary D. Foley, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker, Peter J. Scherpelz, Yong Sun, Chuteng Zhou
  • Publication number: 20190027334
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a first film layer disposed on the electrode about a periphery of the electrode; and a second film layer disposed on the first film layer, the second film layer including a plurality of electrically conductive grid lines patterned therein that are supported only at the periphery of the electrode by the first film layer.
    Type: Application
    Filed: July 20, 2018
    Publication date: January 24, 2019
    Applicant: Modern Electron, LLC
    Inventors: Yong Sun, Andrew T. Koch, Andrew R. Lingley, Chloe A. M. Fabien, Max N. Mankin, Tony S. Pan
  • Patent number: 10169062
    Abstract: Techniques are disclosed for performing input/output (I/O) requests to two or more physical adapters in parallel. An address for at least a first page associated with a virtual I/O request is mapped to an entry in a virtual translation control entry (TCE) table. A plurality of physical adapters required to service the virtual I/O request are identified. Upon determining, in each of the identified physical adapters, that an entry in the respective physical TCE table corresponding to the physical adapter is available, for each of the identified physical adapters, the entry in the virtual TCE table is mapped to an entry in the respective physical TCE table corresponding to the physical adapter, and a physical I/O request corresponding to each physical TCE table entry is issued to the respective physical adapter.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andrew T. Koch, Kyle A. Lucke, Nicholas J. Rogness, Steven E. Royer
  • Patent number: 10169287
    Abstract: A method and apparatus are provided for implementing modal selection of a bimodal coherent accelerator in a computer system. Implementing modal selection of a bimodal coherent accelerator using a PCI-Express standard Vendor Specific Extended Capability (VSEC) structure or CAPI VSEC data in the configuration space of a CAPI-capable PCIE adapter and procedures defined in the Coherent Accelerator Interface Architecture (CAIA) to enable and control a coherent coprocessor adapter over PCIE. A CAPI-capable PCIE adapter is enabled to be bimodal and operate in conventional PCI-Express (PCIE) transaction modes or CAPI modes that utilize CAIA coherence and programming interface capabilities.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Charles R. Johns, Andrew T. Koch, Gregory M. Nordstrom
  • Publication number: 20180129521
    Abstract: Techniques are disclosed for performing input/output (I/O) requests to two or more physical adapters in parallel. An address for at least a first page associated with a virtual I/O request is mapped to an entry in a virtual translation control entry (TCE) table. A plurality of physical adapters required to service the virtual I/O request are identified. Upon determining, in each of the identified physical adapters, that an entry in the respective physical TCE table corresponding to the physical adapter is available, for each of the identified physical adapters, the entry in the virtual TCE table is mapped to an entry in the respective physical TCE table corresponding to the physical adapter, and a physical I/O request corresponding to each physical TCE table entry is issued to the respective physical adapter.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventors: Andrew T. KOCH, Kyle A. LUCKE, Nicholas J. ROGNESS, Steven E. ROYER
  • Publication number: 20180129522
    Abstract: Techniques are disclosed for performing input/output (I/O) requests to two or more physical adapters in parallel. An address for at least a first page associated with a virtual I/O request is mapped to an entry in a virtual translation control entry (TCE) table. A plurality of physical adapters required to service the virtual I/O request are identified. Upon determining, in each of the identified physical adapters, that an entry in the respective physical TCE table corresponding to the physical adapter is available, for each of the identified physical adapters, the entry in the virtual TCE table is mapped to an entry in the respective physical TCE table corresponding to the physical adapter, and a physical I/O request corresponding to each physical TCE table entry is issued to the respective physical adapter.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventors: Andrew T. KOCH, Kyle A. LUCKE, Nicholas J. ROGNESS, Steven E. ROYER
  • Publication number: 20180052801
    Abstract: A method and apparatus are provided for implementing modal selection of a bimodal coherent accelerator in a computer system. Implementing modal selection of a bimodal coherent accelerator using a PCI-Express standard Vendor Specific Extended Capability (VSEC) structure or CAPI VSEC data in the configuration space of a CAPI-capable PCIE adapter and procedures defined in the Coherent Accelerator Interface Architecture (CAIA) to enable and control a coherent coprocessor adapter over PCIE. A CAPI-capable PCIE adapter is enabled to be bimodal and operate in conventional PCI-Express (PCIE) transaction modes or CAPI modes that utilize CAIA coherence and programming interface capabilities.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 22, 2018
    Inventors: Charles R. Johns, Andrew T. Koch, Gregory M. Nordstrom
  • Patent number: 9875125
    Abstract: Techniques are disclosed for performing input/output (I/O) requests to two or more physical adapters in parallel. One method for performing an input/output (I/O) request includes mapping an address for at least a first page associated with a virtual I/O request to an entry in a virtual TCE table and identifying a plurality of physical adapters required to service the virtual I/O request. For each of the identified physical adapters, the entry in the virtual TCE table is mapped to an entry in a physical TCE table corresponding to the physical adapter. This method may also include, in parallel, issuing physical I/O requests to the physical adapters.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: January 23, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew T. Koch, Kyle A. Lucke, Nicholas J. Rogness, Steven E. Royer