Patents by Inventor Andrzej Malek
Andrzej Malek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230062065Abstract: A process for preparing C2 to C4 olefins includes introducing a feed stream of hydrogen gas and a carbon-containing gas into a reaction zone of a reactor and converting the feed stream into a product stream including C2 to C4 olefins in the reaction zone in the presence of a hybrid catalyst and in a non-oxidative atmosphere. The hybrid catalyst includes a metal oxide catalyst component comprising gallium oxide and zirconia, and a microporous catalyst component having an 8 membered ring structure. The process also includes periodically introducing an oxidative atmosphere into the reaction zone.Type: ApplicationFiled: December 14, 2020Publication date: March 2, 2023Applicant: Dow Global Technologies LLCInventors: Joseph F. DEWILDE, Adam CHOJECKI, Alexey KIRILIN, Ewa A. TOCHA-BIELAK, David F. Yancey, Glenn Pollefeyt, Davy L.S. NIESKENS, Andrzej MALEK
-
Publication number: 20230052682Abstract: A process for preparing C2 to C4 hydrocarbons includes introducing a feed stream into a reaction zone of a reactor, the feed stream comprising hydrogen gas and carbon monoxide. An additional stream is introduced into the reaction zone of the reactor, the additional stream comprising carbon dioxide. A combined stream that includes the feed stream and the additional stream is converted into a product stream comprising C2 to C4 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a mixed metal oxide catalyst component, and a microporous catalyst component. The process operates at a gas hourly space velocity in excess of 2500 hr-1 and effectively yields a net carbon dioxide selectivity of less than 5.0% and a productivity of C2-C4 hydrocarbons greater than 75 g hydrocarbons per kilogram of catalyst per hour.Type: ApplicationFiled: December 2, 2020Publication date: February 16, 2023Applicant: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Davy L.S. Nieskens, Alexey Kirilin, Adam Chojecki, Joseph F. Dewilde, Barry B. Fish, Andrzej Malek
-
Catalyst for converting carbon-containing stream to C2 to C5 paraffins and method using the catalyst
Patent number: 11572321Abstract: A process for preparing C2 to C5 paraffins includes introducing a feed stream comprising hydrogen gas and a carbon-containing gas into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C5 paraffins in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component and a microporous catalyst component. The metal oxide catalyst component satisfies: an atomic ratio of Cu/Zn from 0.01 to 3.00; an atomic ratio of Cr/Zn from 0.01 to 1.50; and percentage of (Al+Cr) from greater than 0.0 at % to 50.0 at % based on a total amount of metal in the metal oxide catalyst component.Type: GrantFiled: November 22, 2021Date of Patent: February 7, 2023Assignee: Dow Global Technologies LLCInventors: Davy L. S. Nieskens, Glenn Pollefeyt, Andrzej Malek, Edward M. Calverley, Peter E. Groenendijk, Aysegul Ciftci Sandikci -
Patent number: 11555000Abstract: A process for preparing C2 to C5 hydrocarbons includes introducing a feed stream into a reaction zone of a reactor, the feed stream including hydrogen gas and carbon monoxide. An additional stream is introduced into the reaction zone of the reactor, the additional stream comprising water, carbon dioxide, or mixtures thereof. A combined stream that includes the feed stream and the additional stream is converted into a product stream comprising C2 to C5 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component, and a microporous catalyst component.Type: GrantFiled: May 9, 2019Date of Patent: January 17, 2023Assignee: Dow Global Technologies LLCInventors: Davy L. S. Nieskens, Glenn Pollefeyt, Andrzej Malek
-
Patent number: 11548835Abstract: A process for preparing C2 to C5 olefins includes introducing a feed stream comprising hydrogen and at least one carbon-containing component selected from the group consisting of CO, CO2, and mixtures thereof into a reaction zone. The feed stream is contacted with a hybrid catalyst in the reaction zone, and a product stream is formed that exits the reaction zone and includes C2 to C5 olefins. The hybrid catalyst includes a methanol synthesis component and a solid microporous acid component that is selected from molecular sieves having 8-MR access and having a framework type selected from the group consisting of CHA, AEI, AFX, ERI, LTA, UFI, RTH, and combinations thereof. The methanol synthesis component comprises a metal oxide support and a metal catalyst. The metal oxide support includes titania, zirconia, hafnia or mixtures thereof, and the metal catalyst includes zinc.Type: GrantFiled: October 11, 2018Date of Patent: January 10, 2023Assignee: Dow Global TechnologiesInventors: Alexey Kirilin, Adam Chojecki, Kyle C. Andrews, Vera P. Santos Castro, Aysegul Ciftci Sandikci, Davy L. S. Nieskens, Peter E. Groenendijk, Andrzej Malek
-
Patent number: 11446642Abstract: A hybrid catalyst including a metal oxide catalyst component comprising chromium, zinc, and at least one additional metal selected from the group consisting of iron and manganese, and a microporous catalyst component that is a molecular sieve having 8-MR pore openings. The at least one additional metal is present in an amount from 5.0 at % to 20.0 at %.Type: GrantFiled: June 20, 2019Date of Patent: September 20, 2022Assignee: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Davy L. S. Nieskens, Vera P. Santos Castro, Alexey Kirilin, Adam Chojecki, David Yancey, Andrzej Malek
-
Publication number: 20220289647Abstract: A method for separating CO2 from C2 to C5 alkanes includes introducing a first stream including C2 to C5 alkanes and CO2 into a first separation zone, the first separation zone including a hydrocarbon solvent, and separating the first stream into a recycle stream and a second stream in the first separation zone. The recycle stream including CO2 and one or more of CO, H2, and CH4, and the second stream including C2 to C5 alkanes. The method further includes introducing the second stream into a second separation zone, and separating the second stream into a third stream and a fourth stream, wherein the third stream includes C2 alkanes and the fourth stream includes C3 to C5 alkanes.Type: ApplicationFiled: June 1, 2022Publication date: September 15, 2022Applicant: Dow Global Technologies LLCInventors: Barry Brent Fish, Peter E. Groenendijk, Andrzej Malek, Davy L.S. Nieskens, Brien A. Stears
-
Publication number: 20220251005Abstract: A method for operating an acetylene hydrogenation unit of a steam cracking system that integrates a fluidized catalytic dehydrogenation (FCDh) effluent from a fluidized catalytic dehydrogenation (FCDh) system may include separating a cracked gas from the steam cracking system into at least a hydrogenation feed comprising at least acetylene, CO, and hydrogen, introducing the FCDh effluent to the separation system, combining the FCDh effluent with the cracked gas upstream of the separation system, or both. The method may include hydrogenating acetylene in the hydrogenation feed. Elevated CO concentration in the hydrogenation feed due to the FCDh effluent may reduce a reaction rate of acetylene hydrogenation. The acetylene hydrogenation unit may operate at an elevated temperature relative to normal operating temperatures when the portion of the FCDh effluent is not integrated, such that a concentration of acetylene in the hydrogenated effluent is less than a threshold acetylene concentration.Type: ApplicationFiled: June 8, 2020Publication date: August 11, 2022Applicant: Dow Global Technologies LLCInventors: Hangyao Wang, Lin Luo, Yu Liu, Matthew T. Pretz, Andrzej Malek
-
Publication number: 20220227687Abstract: A method for operating an acetylene hydrogenation unit in an integrated steam cracking-fluidized catalytic dehydrogenation (FCDh) system may include separating a cracked gas from a steam cracking system and an FCDh effluent from an FCDh system into a hydrogenation feed and an acetylene-depleted stream, the hydrogenation feed comprising at least hydrogen, CO, and acetylene. During normal operating conditions, at least 20% of the CO in the hydrogenation feed is from the cracked gas. The method may include contacting the hydrogenation feed with an acetylene hydrogenation catalyst to hydrogenate at least a portion of the acetylene in the hydrogenation feed to produce a hydrogenated effluent. The steam cracking is operated under conditions that increase CO production such that a concentration of CO in the cracked gas is great enough that when a flowrate of the FCDh effluent is zero, a CO concentration in the hydrogenation feed is at least 100 ppmv.Type: ApplicationFiled: June 8, 2020Publication date: July 21, 2022Applicant: Dow Global Technologies LLCInventors: Lin Luo, Hangyao Wang, Yu Liu, Matthew T. Pretz, Andrzej Malek
-
Publication number: 20220220044Abstract: A method for preparing C2 to C5 paraffins including introducing a feed stream of hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. Converting the feed stream into a product stream that includes C2 to C5 paraffins in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst including a microporous catalyst component; and a metal oxide catalyst component. The metal oxide catalyst component including a metal component present on a metal oxide support material. The metal oxide support material includes at least one oxide of a metal selected from Group 4 of the IUPAC periodic table of elements. The product stream has a C3/C2 carbon molar ratio greater than or equal to 4.0.Type: ApplicationFiled: May 7, 2020Publication date: July 14, 2022Applicant: Dow Global Technologies LLCInventors: Alexey Kirilin, Adam Chojecki, Joseph F. Dewilde, Glenn Pollefeyt, Davy L.S. Nieskens, Andrzej Malek
-
Patent number: 11377403Abstract: A method for separating CO2 from C2 to C5 alkanes includes introducing a first stream including C2 to C5 alkanes and CO2 into a first separation zone, the first separation zone including a hydrocarbon solvent, and separating the first stream into a recycle stream and a second stream in the first separation zone. The recycle stream including CO2 and one or more of CO, H2, and CH4, and the second stream including C2 to C5 alkanes. The method further includes introducing the second stream into a second separation zone, and separating the second stream into a third stream and a fourth stream, wherein the third stream includes C2 alkanes and the fourth stream includes C3 to C5 alkanes.Type: GrantFiled: April 25, 2018Date of Patent: July 5, 2022Assignee: Dow Global Technologies LLCInventors: Barry Brent Fish, Peter E. Groenendijk, Andrzej Malek, Davy L. S. Nieskens, Brien A. Stears
-
CATALYST FOR CONVERTING CARBON-CONTAINING STREAM TO C2 TO C5 PARAFFINS AND METHOD USING THE CATALYST
Publication number: 20220135494Abstract: A process for preparing C2 to C5 paraffins includes introducing a feed stream comprising hydrogen gas and a carbon-containing gas into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C5 paraffins in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component and a microporous catalyst component. The metal oxide catalyst component satisfies: an atomic ratio of Cu/Zn from 0.01 to 3.00; an atomic ratio of Cr/Zn from 0.01 to 1.50; and percentage of (Al+Cr) from greater than 0.0 at % to 50.0 at % based on a total amount of metal in the metal oxide catalyst component.Type: ApplicationFiled: November 22, 2021Publication date: May 5, 2022Applicant: Dow Global Technologies LLCInventors: Davy L.S. Nieskens, Glenn Pollefeyt, Andrzej Malek, Edward M. Calverley, Peter E. Groenendijk, Aysegul Ciftci Sandikci -
Publication number: 20220088574Abstract: A method for preparing C2 to C5 paraffins includes introducing a feed stream including hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. Converting the feed stream into a product stream including C2 to C5 paraffins in the presence of a hybrid catalyst. The hybrid catalyst includes a microporous catalyst component; and a metal oxide catalyst component selected from (A) a bulk material consisting of gallium oxide, (B) gallium oxide present on a titanium dioxide support material, and (C) a mixture of gallium oxide and at least one promoter present on a support material selected from Group 4 of the IUPAC periodic table of elements.Type: ApplicationFiled: December 16, 2019Publication date: March 24, 2022Applicant: Dow Global Technologies LLCInventors: Alexey Kirilin, Adam Chojecki, Glenn Pollefeyt, Davy L.S. Nieskens, Kyle C. Andrews, Vera P. Santos Castro, Joseph F. DeWilde, David F. Yancey, Andrzej Malek
-
Publication number: 20220080392Abstract: A process for preparing C2 to C4 olefins includes introducing a feed stream comprising hydrogen gas and a carbon-containing gas selected from carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor. The feed stream is converted into a product stream including C2 to C4 olefins in the reaction zone in the presence of the hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component comprising gallium oxide and phase pure zirconia, and a microporous catalyst component.Type: ApplicationFiled: December 16, 2019Publication date: March 17, 2022Applicant: Dow Global Technologies LLCInventors: Adam Chojecki, Alexey Kirilin, Andrzej Malek, Joseph F. DeWilde, Vera P. Santos Castro, David F. Yancey, Kyle C. Andrews
-
Publication number: 20220055968Abstract: A process for preparing C2 to C5 hydrocarbons includes introducing a feed stream into a reaction zone of a reactor, the feed stream including hydrogen gas and carbon monoxide. An additional stream is introduced into the reaction zone of the reactor, the additional stream comprising water, carbon dioxide, or mixtures thereof. A combined stream that includes the feed stream and the additional stream is converted into a product stream comprising C2 to C5 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component, and a microporous catalyst component.Type: ApplicationFiled: May 9, 2019Publication date: February 24, 2022Applicant: Dow Global Technologies LLCInventors: Davy L.S. Nieskens, Glenn Pollefeyt, Andrzej Malek
-
Patent number: 11220469Abstract: A process for converting a feed stream having carbon to C2 to C5 olefins, includes introducing a feed stream including methane and oxygen to a first reaction zone, reacting the methane and oxygen in the first reaction zone to form a first reaction zone product stream having a mixture of C2 to C5 alkanes, transporting the mixture of C2 to C5 alkanes to a second reaction zone, introducing a fresh stream of at least one of ethane and propane to the second reaction zone, converting the C2 to C5 alkanes to C2 to C5 olefins in the second reaction zone, producing one or more product streams in the second reaction zone, where a sum of the one or more product streams includes C2 to C5 olefins, and producing a recycle stream comprising hydrogen in the second reaction zone, where the recycle stream is transported to the first reaction zone.Type: GrantFiled: October 9, 2018Date of Patent: January 11, 2022Assignee: Dow Global Technologies LLCInventors: Barry B. Fish, Peter E. Groenendijk, Davy L. S. Nieskens, Andrzej Malek, Brien A. Stears
-
Patent number: 11208363Abstract: A process for preparing C2 to C5 paraffins includes introducing a feed stream comprising hydrogen gas and a carbon-containing gas into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C5 paraffins in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component and a microporous catalyst component. The metal oxide catalyst component satisfies: an atomic ratio of Cu/Zn from 0.01 to 3.00; an atomic ratio of Cr/Zn from 0.01 to 1.50; and percentage of (Al+Cr) from greater than 0.0 at % to 50.0 at % based on a total amount of metal in the metal oxide catalyst component.Type: GrantFiled: February 7, 2019Date of Patent: December 28, 2021Assignee: Dow Global Technologies LLCInventors: Davy L. S. Nieskens, Glenn Pollefeyt, Andrzej Malek, Edward M. Calverley, Peter E. Groenendijk, Aysegul Ciftci Sandikci
-
Publication number: 20210371355Abstract: A process for preparing C2 to C5 olefins includes introducing a feed stream comprising hydrogen and at least one carbon-containing component selected from the group consisting of CO, CO2, and mixtures thereof into a reaction zone. The feed stream is contacted with a hybrid catalyst in the reaction zone, and a product stream is formed that exits the reaction zone and includes C2 to C5 olefins. The hybrid catalyst includes a methanol synthesis component and a solid microporous acid component that is selected from molecular sieves having 8-MR access and having a framework type selected from the group consisting of CHA, AEI, AFX, ERI, LTA, UFI, RTH, and combinations thereof. The methanol synthesis component comprises a metal oxide support and a metal catalyst. The metal oxide support includes titania, zirconia, hafnia or mixtures thereof, and the metal catalyst includes zinc.Type: ApplicationFiled: October 11, 2018Publication date: December 2, 2021Applicant: Dow Global Technologies LLCInventors: Alexey Kirilin, Adam Chojecki, Kyle C. Andrews, Vera P. Santos Castro, Aysegul Ciftci Sandikci, Davy L.S. Nieskens, Peter E. Groenendijk, Andrzej Malek
-
Publication number: 20210317004Abstract: Embodiments of the present disclosure are directed to hydrogen-selective oxygen carrier materials and methods of using hydrogen-selective oxygen carrier materials. The hydrogen-selective oxygen carrier material may comprise a core material, which includes a redox-active transition metal oxide; a shell material, which includes one or more alkali transition metal oxides; and a support material. The shell material may be in direct contact with at least a majority of an outer surface of the core material. At least a portion of the core material may be in direct contact with the support material. The hydrogen-selective oxygen carrier material may be selective to combust hydrogen in an environment that includes hydrogen and hydrocarbons.Type: ApplicationFiled: August 27, 2019Publication date: October 14, 2021Applicant: Dow Global Technologies LLCInventors: Brian W. Goodfellow, Manish Sharma, David F. Yancey, Andrzej Malek, Eric E. Stangland
-
Publication number: 20210292259Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.Type: ApplicationFiled: August 27, 2019Publication date: September 23, 2021Applicant: Dow Global Technologies LLCInventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma