Patents by Inventor Andrzej Malek
Andrzej Malek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210268484Abstract: A hybrid catalyst including a metal oxide catalyst component comprising chromium, zinc, and at least one additional metal selected from the group consisting of iron and manganese, and a microporous catalyst component that is a molecular sieve having 8-MR pore openings. The at least one additional metal is present in an amount from 5.0 at % to 20.0 at %.Type: ApplicationFiled: June 20, 2019Publication date: September 2, 2021Applicant: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Davy L.S. Nieskens, Vera P. Santos Castro, Alexey Kirilin, Adam Chojecki, David Yancey, Andrzej Malek
-
Publication number: 20210268482Abstract: A hybrid catalyst including a metal oxide catalyst component comprising chromium, zinc, and at least one additional metal selected from the group consisting of aluminum and gallium, and a microporous catalyst component that is a molecular sieve having 8-MR pore openings. The metal oxide catalyst component includes anatomic ratio of chromium:zinc (Cr:Zn) from 0.35 to 1.00, and the at least one additional metal is present in an amount from 25.0 at % to 40.0 at %. A process for preparing C2 and C3 olefins comprising: a) introducing a feed stream comprising hydrogen gas and a carbon-containing gas selected from the group consisting of carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor; and b) converting the feed stream into a product stream comprising C2 and C3 olefins in the reaction zone in the presence of said hybrid catalyst.Type: ApplicationFiled: June 20, 2019Publication date: September 2, 2021Applicant: Dow Global Technologies LLCInventors: Glenn Pollefeyt, Davy L.S. Nieskens, Vera P. Santos Castro, Alexey Kirilin, Adam Chojecki, David Yancey, Andrzej Malek
-
Publication number: 20210245146Abstract: Embodiments of the present disclosure are directed to methods of producing a hydrogen- selective oxygen carrier material comprising combining one or more core material precursors and one or more shell material precursors to from a precursor mixture and heat-treating the precursor mixture at a treatment temperature to form the hydrogen-selective oxygen carrier material. The treatment temperature is greater than or equal to 100° C. less than the melting point of a shell material, and the hydrogen- selective oxygen carrier material comprises a core comprising a core material and a shell comprising the shell material. The shell material may be in direct contact with at least a majority of an outer surface of the core material.Type: ApplicationFiled: August 27, 2019Publication date: August 12, 2021Applicant: Dow Global Technologies LLCInventors: Manish Sharma, Brian W. Goodfellow, David F. Yancey, Andrzej Malek, Eric E. Stangland
-
Publication number: 20210198164Abstract: A process for converting a feed stream having carbon to C2 to C5 olefins, includes introducing a feed stream including methane and oxygen to a first reaction zone, reacting the methane and oxygen in the first reaction zone to form a first reaction zone product stream having a mixture of C2 to C5 alkanes, transporting the mixture of C2 to C5 alkanes to a second reaction zone, introducing a fresh stream of at least one of ethane and propane to the second reaction zone, converting the C2 to C5 alkanes to C2 to C5 olefins in the second reaction zone, producing one or more product streams in the second reaction zone, where a sum of the one or more product streams includes C2 to C5 olefins, and producing a recycle stream comprising hydrogen in the second reaction zone, where the recycle stream is transported to the first reaction zone.Type: ApplicationFiled: October 9, 2018Publication date: July 1, 2021Applicant: Dow Global Technologies LLCInventors: Barry B. Fish, Peter E. Groenendijk, Davy L.S. Nieskens, Andrzej Malek, Brien A. Stears
-
Publication number: 20210087120Abstract: A process for preparing C2 to C5 paraffins includes introducing a feed stream comprising hydrogen gas and a carbon-containing gas into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C5 paraffins in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst includes a metal oxide catalyst component and a microporous catalyst component. The metal oxide catalyst component satisfies: an atomic ratio of Cu/Zn from 0.01 to 3.00; an atomic ratio of Cr/Zn from 0.01 to 1.50; and percentage of (Al+Cr) from greater than 0.0 at % to 50.0 at % based on a total amount of metal in the metal oxide catalyst component.Type: ApplicationFiled: February 7, 2019Publication date: March 25, 2021Applicant: Dow Global Technologies LLCInventors: Davy L.S. Nieskens, Glenn Pollefeyt, Andrzej Malek, Edward M. Calverley, Peter E. Groenendijk, Aysegul Ciftci Sandikci
-
Patent number: 10787611Abstract: A process for preparing C2 to C3 olefins includes introducing a feed stream having a volumetric ratio of hydrogen to carbon monoxide from greater than 0.5:1 to less than 5:1 into a reactor, and contacting the feed stream with a bifunctional catalyst. The bifunctional catalyst includes a Cr/Zn oxide methanol synthesis component having a Cr to Zn molar ratio from greater than 1.0:1 to less than 2.15:1, and a SAPO-34 silicoaluminophosphate microporous crystalline material. The reactor operates at a temperature ranging from 350° C. to 450° C., and a pressure ranging from 10 bar (1.0 MPa) to 60 bar (6.0 MPa). The process has a cumulative productivity of C2 to C3 olefins greater than 15 kg C2 to C3 olefins/kg catalyst.Type: GrantFiled: December 21, 2017Date of Patent: September 29, 2020Assignee: Dow Global Technologies LLCInventors: Davy L. S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Patent number: 10703689Abstract: A process for converting a feed stream to C2 to C5 hydrocarbons includes introducing a feed stream of hydrogen and at least one carbon-containing component selected from CO, CO2, and mixtures thereof into a reaction zone at an initial reactor pressure and an initial reactor temperature. The feed stream is contacted to a hybrid catalyst positioned in the reaction zone, and the hybrid catalyst includes a methanol synthesis component and a solid microporous acid material. The pressure within the reaction zone is increased during the contacting of the feed stream to the hybrid catalyst from the initial reactor pressure to a final reactor pressure. A temperature within the reaction zone at any time during the contacting of the feed stream to the hybrid catalyst is within ±20° C. of the initial reactor temperature.Type: GrantFiled: February 2, 2018Date of Patent: July 7, 2020Assignee: Dow Global Technologies LLCInventors: Davy L. S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Patent number: 10654035Abstract: The present disclosure provides an air-soak containing regeneration process reducing its time. The process includes (i) removing surface carbon species from a gallium-based alkane dehydrogenation catalyst in a combustion process in the presence of a fuel gas; (ii) conditioning the gallium-based alkane dehydrogenation catalyst after (i) in air-soak treatment at a temperature of 660° C. to 850° C. with (iii) a flow of oxygen-containing gas having (iv) 0.Type: GrantFiled: February 22, 2017Date of Patent: May 19, 2020Assignee: Dow Global Technologies LLCInventors: Andrzej Malek, David Gordon Barton, Lin Luo
-
Patent number: 10639586Abstract: A method and an integrated system for reducing CO2 emissions in industrial processes. The method and integrated system (100) capture carbon dioxide (CO2) gas from a first gas stream (104) with a chemical absorbent to produce a second gas stream (106) having a higher concentration of carbon monoxide (CO) gas and a lower concentration of CO2 gas as compared to first gas stream. The CO gas in the second gas stream is used to produce C5 to C20 hydrocarbons in an exothermic reaction (108) with hydrogen (H2) gas (138). At least a portion of the heat generated in the exothermic reaction is used to regenerate the chemical absorbent with the liberation of the CO2 gas (128) captured from the first gas stream. Heat captured during the exothermic reaction can, optionally, first be used to generate electricity, wherein the heat remaining after generating electricity is used to thermally regenerate the chemical absorbent.Type: GrantFiled: November 14, 2016Date of Patent: May 5, 2020Assignee: Dow Global Technologies LLCInventors: Thomas Davidian, Steven Corthals, Cornelis Biesheuvel, Matthijs Ruitenbeek, Andrzej Malek, Peter E. Groenendijk, Garmt R. Meima
-
Patent number: 10633301Abstract: A process for converting oxygenates to hydrocarbons includes introducing a feed stream having at least one oxygenate into a reaction zone, and introducing a hydrogen gas stream into the reaction zone. In the reaction zone the feed stream and the hydrogen gas stream are simultaneously contacted with a catalyst, and the catalyst includes a solid microporous acid component having 8-MR to 10-MR access. The hydrogen gas stream in the reaction zone has a partial pressure from 1 bar (100 kPa) to 48 bar (4800 kPa), and the reaction zone is at a temperature from 350° C. to 500° C.Type: GrantFiled: December 14, 2017Date of Patent: April 28, 2020Assignee: Dow Global Technologies LLCInventors: Davy L. S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Publication number: 20200123078Abstract: A process for converting a feed stream to C2 to C5 hydrocarbons includes introducing a feed stream of hydrogen and at least one carbon-containing component selected from CO, CO2, and mixtures thereof into a reaction zone at an initial reactor pressure and an initial reactor temperature. The feed stream is contacted to a hybrid catalyst positioned in the reaction zone, and the hybrid catalyst includes a methanol synthesis component and a solid microporous acid material. The pressure within the reaction zone is increased during the contacting of the feed stream to the hybrid catalyst from the initial reactor pressure to a final reactor pressure. A temperature within the reaction zone at any time during the contacting of the feed stream to the hybrid catalyst is within±20° C. of the initial reactor temperature.Type: ApplicationFiled: February 2, 2018Publication date: April 23, 2020Applicant: Dow Global Technologies LLCInventors: Davy L.S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Publication number: 20200055801Abstract: A method for separating CO2 from C2 to C5 alkanes includes introducing a first stream including C2 to C5 alkanes and CO2 into a first separation zone, the first separation zone including a hydrocarbon solvent, and separating the first stream into a recycle stream and a second stream in the first separation zone. The recycle stream including CO2 and one or more of CO, H2, and CH4, and the second stream including C2 to C5 alkanes. The method further includes introducing the second stream into a second separation zone, and separating the second stream into a third stream and a fourth stream, wherein the third stream includes C2 alkanes and the fourth stream includes C3 to C5 alkanes.Type: ApplicationFiled: April 25, 2018Publication date: February 20, 2020Applicant: Dow Global Technologies LLCInventors: Barry Brent Fish, Peter E. Groenendijk, Andrzej Malek, Davy L.S. Nieskens, Brien A. Stears
-
Publication number: 20200024213Abstract: A process for converting oxygenates to hydrocarbons includes introducing a feed stream having at least one oxygenate into a reaction zone, and introducing a hydrogen gas stream into the reaction zone. In the reaction zone the feed stream and the hydrogen gas stream are simultaneously contacted with a catalyst, and the catalyst includes a solid microporous acid component having 8-MR to 10-MR access. The hydrogen gas stream in the reaction zone has a partial pressure from 1 bar (100 kPa) to 48 bar (4800 kPa), and the reaction zone is at a temperature from 350° C. to 500° C.Type: ApplicationFiled: December 14, 2017Publication date: January 23, 2020Applicant: Dow Global Technologies LLCInventors: Davy L.S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Publication number: 20200017774Abstract: A process for preparing C2 to C3 olefins includes introducing a feed stream having a volumetric ratio of hydrogen to carbon monoxide from greater than 0.5:1 to less than 5:1 into a reactor, and contacting the feed stream with a bifunctional catalyst. The bifunctional catalyst includes a Cr/Zn oxide methanol synthesis component having a Cr to Zn molar ratio from greater than 1.0:1 to less than 2.15:1, and a SAPO-34 silicoaluminophosphate microporous crystalline material. The reactor operates at a temperature ranging from 350° C. to 450° C., and a pressure ranging from 10 bar (1.0 MPa) to 60 bar (6.0 MPa). The process has a cumulative productivity of C2 to C3 olefins greater than 15 kg C2 to C3 olefins/kg catalyst.Type: ApplicationFiled: December 21, 2017Publication date: January 16, 2020Applicant: Dow Global Technologies LLCInventors: Davy L.S. Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Patent number: 10329209Abstract: A process for preparing C2 and C3 olefins comprises contacting a feedstream including hydrogen, carbon monoxide, and a bifunctional catalyst in a reaction under certain specified conditions. The catalyst includes as components (1) chromium oxide and zinc oxide mixed metal oxides, and (2) a SAPO-34 molecular sieve. The resulting product of the reaction is relatively high in the target lower olefins and relatively low in less desirable products, including C2 and C3 paraffins, C4+ hydrocarbons, oxygenates, and methane, thereby reducing or eliminating the need for certain previously common and costly separations. The bifunctional catalyst as used in the inventive process also offers improvements in catalyst life in comparison with some methanol-to-olefins catalysts. The process may be carried out as a single unit operation.Type: GrantFiled: September 7, 2016Date of Patent: June 25, 2019Assignee: Dow Global Technologies, LLCInventors: Davy Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Patent number: 10207259Abstract: Prepare a hybrid SAPO-34/ZSM-5 catalyst via sequential steps as follows: a) form a mixture consisting essentially of ZSM-5 as a sole source of silicon atoms, aluminum isopropoxide and a solution of orthophosphoric acid; b) combine the mixture with an aqueous solution of tetraethylammonium hydroxide to form a reaction mixture; and c) subject the reaction mixture to hydrothermal conditions for a period of time sufficient to convert the reaction mixture to a hybrid SAPO-34/ZSM-5 catalyst. Use the hybrid catalyst in converting an oxygenate (methanol and/or dimethyl ether) to an olefin.Type: GrantFiled: September 9, 2015Date of Patent: February 19, 2019Assignee: Dow Global Technologies LLCInventors: Yu Liu, Andrzej Malek
-
Publication number: 20190046968Abstract: The present disclosure provides an air-soak containing regeneration process reducing its time. The process includes (i) removing surface carbon species from a gallium-based alkane dehydrogenation catalyst in a combustion process in the presence of a fuel gas; (ii) conditioning the gallium-based alkane dehydrogenation catalyst after (i) in air-soak treatment at a temperature of 660° C. to 850° C. with (iii) a flow of oxygen-containing gas having (iv) 0.Type: ApplicationFiled: February 22, 2017Publication date: February 14, 2019Applicant: Dow Global Technologies LLCInventors: Andrzej MALEK, David Gordon BARTON, Lin LUO
-
Publication number: 20180326352Abstract: A method and an integrated system for reducing CO2 emissions in industrial processes. The method and integrated system (100) capture carbon dioxide (CO2) gas from a first gas stream (104) with a chemical absorbent to produce a second gas stream (106) having a higher concentration of carbon monoxide (CO) gas and a lower concentration of CO2 gas as compared to first gas stream. The CO gas in the second gas stream is used to produce C5 to C20 hydrocarbons in an exothermic reaction (108) with hydrogen (H2) gas (138). At least a portion of the heat generated in the exothermic reaction is used to regenerate the chemical absorbent with the liberation of the CO2 gas (128) captured from the first gas stream. Heat captured during the exothermic reaction can, optionally, first be used to generate electricity, wherein the heat remaining after generating electricity is used to thermally regenerate the chemical absorbent.Type: ApplicationFiled: November 14, 2016Publication date: November 15, 2018Applicant: Dow Global Technologies LLCInventors: Thomas Davidian, Steven Corthals, Cornelis Biesheuvel, Matthijs Ruitenbeek, Andrzej Malek, Peter E. Groenendijk, Garmt R. Meima
-
Publication number: 20180305272Abstract: A process for preparing C2 and C3 olefins comprises contacting a feedstream including hydrogen, carbon monoxide, and a bifunctional catalyst in a reaction under certain specified conditions. The catalyst includes as components (1) chromium oxide and zinc oxide mixed metal oxides, and (2) a SAPO-34 molecular sieve. The resulting product of the reaction is relatively high in the target lower olefins and relatively low in less desirable products, including C2 and C3 paraffins, C4+ hydrocarbons, oxygenates, and methane, thereby reducing or eliminating the need for certain previously common and costly separations. The bifunctional catalyst as used in the inventive process also offers improvements in catalyst life in comparison with some methanol-to-olefins catalysts. The process may be carried out as a single unit operation.Type: ApplicationFiled: September 7, 2016Publication date: October 25, 2018Applicant: Dow Global Technologies LLCInventors: Davy Nieskens, Aysegul Ciftci Sandikci, Peter E. Groenendijk, Andrzej Malek
-
Publication number: 20180178204Abstract: Prepare a hybrid SAPO-34/ZSM-5 catalyst via sequential steps as follows: a) form a mixture consisting essentially of ZSM-5 as a sole source of silicon atoms, aluminum isopropoxide and a solution of orthophosphoric acid; b) combine the mixture with an aqueous solution of tetraethylammonium hydroxide to form a reaction mixture; and c) subject the reaction mixture to hydrothermal conditions for a period of time sufficient to convert the reaction mixture to a hybrid SAPO-34/ZSM-5 catalyst. Use the hybrid catalyst in converting an oxygenate (methanol and/or dimethyl ether) to an olefin.Type: ApplicationFiled: September 9, 2015Publication date: June 28, 2018Applicant: Dow Global Technologies LLCInventors: Yu Liu, Andrzej Malek