Patents by Inventor Andy Haishung Tsou

Andy Haishung Tsou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140011719
    Abstract: A method for improving wear protection in an engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil having a HTHS viscosity of less than 2.6 cP at 150° C. The formulated oil has a composition including a major amount of a lubricating oil base stock and a minor amount of metal phosphate nanoplatelets. The metal phosphate nanoplatelets are dispersed in the lubricating oil base stock sufficient for the formulated oil to pass wear protection requirements of one or more engine tests selected from TU3M, Sequence IIIG, Sequence IVA and OM646LA. Also provided are lubricating engine oil composition having improved wear protection.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 9, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Tabassumul Haque, Andy Haishung Tsou, Shuji Luo, Martin N. Webster
  • Patent number: 8623980
    Abstract: A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: January 7, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David John Lohse, Nikos Hadjichristidis, Andy Haishung Tsou, Pamela J. Wright, Suzzy Chen Hsi Ho, Paul Edward Schuenzel
  • Patent number: 8618214
    Abstract: Provided is a fiber-reinforced composite. The composite has a propylene polymer including 90 wt % or more of propylene monomeric units based on the weight of the propylene polymer; a plurality of fibers of a solid, flexible material grafted to the propylene polymer; and an elastomer. The fibers are present in the composite at 10 wt % to 80 wt % based on the total weight of the composite. The propylene polymer is present in the composite at from 30 wt % to 95 wt % based on the total weight of the composite. The elastomer is present in the composite at from 5 wt % to 50 wt % based on the total weight of the composite. Greater than 50 wt % of the fibers are dispersed within the propylene polymer based on the total weight of the fibers in the composite. There is also provided a process for making a fiber-reinforced composite.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: December 31, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy Haishung Tsou, John Henry Dunsmuir, Donald Andrew Winesett
  • Patent number: 8604136
    Abstract: A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of one or more alkadiene monomers and/or one or more alkenylaromatic polymers under anionic conditions in the presence of a di- or tri-functional organic lithium initiator to produce a polyalkadiene defining a multiplicity of lithiated chain ends; (b) reacting the polyalkadiene with an amount of a tri- or di-functional silane coupling agent to form a dendritic polyalkadiene; and (c) hydrogenating the dendritic polyalkadiene to form a substantially saturated dendritic hydrocarbon polymer.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: December 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David John Lohse, Nikos Hadjichristidis, Andy Haishung Tsou, Suzzy C. H. Ho, Paul Edward Schuenzel
  • Publication number: 20130324447
    Abstract: Provided is a method for stabilizing a dispersion of a carbon nanomaterial in a lubricating oil basestock. The method includes providing a lubricating oil basestock; dispersing a carbon nanomaterial in the lubricating oil basestock; and adding at least one block copolymer thereto. The at least one block copolymer has two or more blocks includes at least one alkenylbenzene block and at least one linear alpha olefin block. The at least one block copolymer is present in an amount sufficient to stabilize the dispersion of the carbon nanomaterial in the lubricating oil basestock. Also provided is a lubricating engine oil having a composition including: a lubricating oil base stock; a carbon nanomaterial dispersed in the lubricating oil basestock; and at least one block copolymer.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy Haishung Tsou, Vera Minak-Bernero, Martin N. Webster, Nikos Hadjichristidis
  • Patent number: 8580877
    Abstract: A vulcanizable layered composition comprising at least two layers and at least one tie layer, wherein the first layer of the two layers is a fluid permeation prevention layer preferably comprising: (A) at least one thermoplastic engineering component and (B) at least one elastomer component; the second layer of the two layers comprises at least one high diene rubber and the tie layer comprises a mixture of: (1) at least one halogenated isobutylene containing elastomer; (2) up to 50 weight % of at least one high diene elastomer; (3) at least one filler; (4) up to 30 weight % of at least one processing oil; (5) at least one tackifier; and (6) a curing system for the elastomers.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: November 12, 2013
    Assignees: ExxonMobil Chemical Patents Inc., The Yokohama Rubber Co., Ltd.
    Inventors: Andy Haishung Tsou, Yoshihiro Soeda, Matthew Brian Measmer, James Peter Stokes, Yoshiaki Kirino, Arthur Joseph Sullivan
  • Publication number: 20130261264
    Abstract: Provided are blends of branched hydrocarbon comb polymers having tailored branching and molecular weight parameters, with substantially linear polymers. Such blends have been found to have improved extensional rheological properties, while maintaining nearly the viscosity of the substantially linear polymers. The blends of the hydrocarbon comb polymers with the substantially linear polymers thus maintain the extrusion processing characteristics of the linear polymer alone, but have improved extensional flow processability, with strain hardening ratios (SHR) greater than 1. The blends are effective in blown film processing. Also disclosed are related methods for improving extensional flow processability using the branched hydrocarbon comb polymers, as well as the branched hydrocarbon comb polymers themselves, including as a property enhancing additive for such substantially linear polymers.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 3, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Johannes Mattieu Soulages, David John Lohse, Andy Haishung Tsou, Thomas Sun, Pamela Jean Wright, Nikos Hadjichristidis, Pradeep Pandurang Shirodkar
  • Patent number: 8487059
    Abstract: A one step process for making a dendritic hydrocarbon polymer, e.g., dendritic polyolefin, by metathesis insertion polymerization. The process comprises polymerizing an amount of one or more cyclic olefins and one or more multi-functional (meth)acrylates in the presence of a metathesis catalyst and under conditions sufficient to produce the dendritic hydrocarbon polymer. The one or more multi-functional (meth)acrylates have a functionality of 3 or higher. The dendritic hydrocarbon polymer can be hydrogenated to produce a substantially saturated dendritic hydrocarbon polymer. The hydrogenation can take place in the same reaction vessel as the polymerization, i.e., one pot process.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 16, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Yong Yang, Andy Haishung Tsou
  • Publication number: 20130172493
    Abstract: A process for making dendritic hydrocarbon polymers by reacting an amount of one or more telechelic hydrocarbon polymers with an amount of one or more multifunctional coupling agents under conditions sufficient to produce the dendritic hydrocarbon polymer. The telechelic hydrocarbon polymer is made by ring opening metathesis polymerization (ROMP) in the presence of bi-functional alkene chain terminating agents (CTAs). The dendritic hydrocarbon polymer can be hydrogenated to produce a substantially saturated dendritic hydrocarbon polymer. The dendritic polyethylenes (dPE) can be used as processability additives to provide extensional hardening in low concentrations in various conventional polyethylenes (PEs) such as HDPE, LLDPE and mLLDPE.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Shuji Luo, Andy Haishung Tsou
  • Publication number: 20130165358
    Abstract: Provided is a comb polyolefin. The comb polyolefin has a copolymer of a multifunctional acrylate monomer and a ?,?-diene monomer terminated with a polyolefin substituent. There is also a process for making a comb polyolefin. There is also a polymer backbone. There is also a polyolefin blend. There is also a lubricant composition including the comb polyolefin.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: ExxonMobil Research and Egineering Company
    Inventors: Yong Yang, Andy Haishung Tsou, Donna Jean Crowther
  • Publication number: 20130158180
    Abstract: A process for making a silica-polyolefin composite. The process has the steps of (a) reacting silica particles and an alkyl halosilane in the presence of a solvent and a catalyst to form silane-functionalized silica particles and (b) reacting the silane-functionalized silica particles with a vinyl-terminated polyolefin. There are other processes for making a silica-polyolefin composites. There are other processes for making metal phosphate-polyolefin composites.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy Haishung Tsou, Shuji Luo, Donna Jean Crowther, Victor DeFlorio
  • Patent number: 8450396
    Abstract: A durable, flexible, impermeable thermoplastic elastomer composition is produced using a dynamic vulcanization process conducted in a high shear mixer at elevated temperature.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: May 28, 2013
    Assignees: ExxonMobil Chemical Patents Inc., The Yokohama Rubber Co., Ltd.
    Inventors: Andy Haishung Tsou, Yuichi Hara, Michael Kenneth Lyon, Yoshihiro Soeda
  • Publication number: 20130131297
    Abstract: A one step process for making a dendritic hydrocarbon polymer, e.g., dendritic polyolefin, by metathesis insertion polymerization. The process comprises polymerizing an amount of one or more cyclic olefins and one or more multi-functional (meth)acrylates in the presence of a metathesis catalyst and under conditions sufficient to produce the dendritic hydrocarbon polymer. The one or more multi-functional (meth)acrylates have a functionality of 3 or higher. The dendritic hydrocarbon polymer can be hydrogenated to produce a substantially saturated dendritic hydrocarbon polymer. The hydrogenation can take place in the same reaction vessel as the polymerization, i.e., one pot process.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yong Yang, Andy Haishung Tsou
  • Patent number: 8445620
    Abstract: Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an ?-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >?45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy Haishung Tsou, Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Alan Anthony Galuska, Patrick Brant, Donald Andrew Winesett
  • Patent number: 8399551
    Abstract: An embodiment of the present invention is a nanocomposite comprising a clay and an elastomer comprising at least C2 to C10 olefin derived units; wherein the elastomer also comprises functionalized monomer units pendant to the elastomer. Desirable embodiments of the elastomer include poly(isobutylene-co-p-alkylstyrene) elastomers and poly(isobutylene-co-isoprene) elastomers, which are functionalized by reacting free radical generating agents and unsaturated carboxylic acids, unsaturated esters, unsaturated imides, and the like, with the elastomer. The clay is exfoliated in one embodiment by the addition of exfoliating agents such as alkyl amines and silanes to the clay. The composition can include secondary rubbers such as general purpose rubbers, and curatives, fillers, and the like. The nanocomposites of the invention have improved air barrier properties such as are useful for tire innerliners and innertubes.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Caiguo Gong, Anthony Jay Dias, Andy Haishung Tsou, Beverly Jean Poole, Kriss Randall Karp
  • Publication number: 20130035442
    Abstract: Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an ?-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >?45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy Haishung Tsou, Gabor Kiss, Robert Patrick Reynolds, JR., John W. Chu, Alan Anthony Galuska, Patrick Brant, Donald Andrew Winesett
  • Publication number: 20130014880
    Abstract: A vulcanizable layered composition comprising at least two layers and at least one tie layer. The first layer of the two layers comprises an fluid permeation prevention layer, the second layer of the two layers comprises at least one high diene rubber, and the tie layer comprises about 50 to about 100 weight % of at least one halogenated isobutylene containing elastomer; up to about 50 weight % of at least one high diene elastomer; about 20 to about 50 weight % of at least one filler; up to about 30 weight % of at least one processing oil; about 1 to about 20 parts per hundred (phr) of at least one tackifier; and about 0.2 to about 15 parts per hundred of rubber (phr) of a curing system for the elastomers. The fluid permeation prevention layer preferably comprises a thermoplastic engineering resin component and an elastomer component.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 17, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Andy Haishung TSOU, Yoshihiro Soeda, Matthew Brian Measmer, Arthur Joseph Sullivan, Yoshiaki Kirino, James Peter Stokes
  • Patent number: 8316904
    Abstract: This disclosure relates to a vulcanizable layered composition comprising at least two layers and at least one tie layer. The first of the two layers comprises a fluid permeation prevention layer and the second comprises at least one high diene rubber. The tie layer comprises, a mixture, in parts by weight relative to 100 weight parts of rubber, of suitable amounts of: (1) epoxidized natural rubber; (2) at least one high diene elastomer; (3) at least one filler; (4) least one tackifier; and (5) a rubber curing system. The fluid permeation prevention layer preferably comprises suitable amounts of: (A) at least one thermoplastic engineering resin component, preferably one or more nylon resins; and (B) at least one elastomer component, preferably a brominated isobutylene p-methylstyrene copolymer/and where the total amount of (A) and (B) is not less than 30% by weight, and wherein (B) is dispersed in a vulcanized or partially vulcanized state, as a discontinuous phase, in a matrix of component (A).
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: November 27, 2012
    Assignees: The Yokohama Rubber Co., Ltd., ExxonMobil Chemical Patents, Inc.
    Inventors: Yoshihiro Soeda, Yoshiaki Kirino, Tomoyuki Sakai, Andy Haishung Tsou
  • Publication number: 20120157633
    Abstract: A process for making a substantially saturated dendritic hydrocarbon polymer. The process has the following steps: (a) polymerizing an amount of a first alkadiene monomer under anionic conditions in the presence of a first organic monolithium initiator to produce a linear polyalkadiene having a lithiated chain end; (b) reacting the linear polyalkadiene with an amount of a second organic monolithium initiator in the presence of tetramethylethylene diamine to form a multilithiated polyalkadiene; (c) reacting the multilithiated polyalkadiene with an amount of a second alkadiene monomer to form a branched polyalkadiene; (d) repeating steps (b) and (c) with the branched polyalkadiene one or more times to prepare a dendritic polyalkadiene; and (e) hydrogenating the dendritic polyalkadiene to form the substantially saturated dendritic hydrocarbon polymer.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 21, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David John Lohse, Nikos Hadjichristidis, Andy Haishung Tsou, Pamela J. Wright, Suzzy Chen Hsi Ho, Paul Edward Schuenzel
  • Patent number: 8021730
    Abstract: A thermoplastic elastomer composition possessing superior air impermeability, excellent durability and flexibility. In particular, the composition includes (A) at least one halogenated isobutylene-containing elastomer; and (B) at least one nylon resin having a melting point of about 170° C. to about 260° C.; and (C) a low molecular weight polymeric nylon plasticizer; wherein: (1) the at least one elastomer is present as a dispersed phase of small vulcanized particles in a continuous nylon phase; and (2) the elastomer particles are formed by dynamic vulcanization. Use of a low molecular weight nylon plasticizer provides for improved mixing and rubber dispersion while retaining the high levels of impermeability achievable by the use of nylon resin and halogenated isobutylene-containing elastomer in a dynamically vulcanized composition. Such compositions are particularly useful in applications such as tire innerliners and barrier films or layers as well as hoses.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: September 20, 2011
    Assignees: ExxonMobil Chemical Patents Inc., The Yokohama Rubber Co., Ltd.
    Inventors: Andy Haishung Tsou, Yoshihiro Soeda, Yuichi Hara, Matthew Brian Measmer