Patents by Inventor ANGUS PACALA

ANGUS PACALA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11624835
    Abstract: Systems and methods are provided for processing lidar data. The lidar data can be obtained in a particular manner that allows reconstruction of rectilinear images for which image processing can be applied from image to image. For instance, kernel-based image processing techniques can be used. Such processing techniques can use neighboring lidar and/or associated color pixels to adjust various values associated with the lidar signals. Such image processing of lidar and color pixels can be performed by dedicated circuitry, which may be on a same integrated circuit. Further, lidar pixels can be correlated to each other. For instance, classification techniques can identify lidar and/or associated color pixels as corresponding to the same object. The classification can be performed by an artificial intelligence (AI) coprocessor. Image processing techniques and classification techniques can be combined into a single system.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: April 11, 2023
    Assignee: Ouster, Inc.
    Inventor: Angus Pacala
  • Patent number: 11585906
    Abstract: An electronically scanning emitter array that includes a two-dimensional array of light emitters arranged in k emitter banks. Each of the k emitter banks can include a subset of the light emitters in the two-dimensional array and can be independently operable to emit light from its subset of emitters. The electronically scanning emitter array can further include first and second capacitor banks coupled to provide energy to the two-dimensional array of light emitters and emitter array driving circuitry coupled to the first and second capacitor banks and to the k emitter banks. Each of the first and second capacitor banks can include at least one capacitor.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: February 21, 2023
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Marvin Liu Shu
  • Publication number: 20230009055
    Abstract: A multispectral sensor array can include a combination of ranging sensor channels (e.g., LIDAR sensor channels) and ambient-light sensor channels tuned to detect ambient light having a channel-specific property (e.g., color). The sensor channels can be arranged and spaced to provide multispectral images of a field of view in which the multispectral images from different sensors are inherently aligned with each other to define an array of multispectral image pixels. Various optical elements can be provided to facilitate imaging operations. Light ranging/imaging systems incorporating multispectral sensor arrays can operate in rotating and/or static modes.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 12, 2023
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Publication number: 20220390610
    Abstract: Methods are provided for using a light ranging system. A computing system receives, from light ranging devices, ranging data including distance vectors to environmental surfaces. A distance vector can correspond to a pixel of a three-dimensional image stream. The system can identify a pose of a virtual camera relative to the light ranging devices. The light ranging devices are separated from the pose by first vectors that are used to translate some of the distance vectors using the first vectors. The system may determine colors associated with the translated distance vectors and display pixels of the three-dimensional image stream using the colors at pixel positions specified by the translated distance vectors. The system may use one or more models with the ranging data to provide semantic labels that describe a region that has been, or is likely to be, in a collision.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 8, 2022
    Applicant: Ouster, Inc.
    Inventors: Pierre AMELOT, Daniel LU, Angus PACALA, Kairen Wong
  • Patent number: 11473970
    Abstract: A multispectral sensor array can include a combination of ranging sensor channels (e.g., LIDAR sensor channels) and ambient-light sensor channels tuned to detect ambient light having a channel-specific property (e.g., color). The sensor channels can be arranged and spaced to provide multispectral images of a field of view in which the multispectral images from different sensors are inherently aligned with each other to define an array of multispectral image pixels. Various optical elements can be provided to facilitate imaging operations. Light ranging/imaging systems incorporating multispectral sensor arrays can operate in rotating and/or static modes.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: October 18, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 11473969
    Abstract: A multispectral sensor array can include a combination of ranging sensor channels (e.g., LIDAR sensor channels) and ambient-light sensor channels tuned to detect ambient light having a channel-specific property (e.g., color). The sensor channels can be arranged and spaced to provide multispectral images of a field of view in which the multispectral images from different sensors are inherently aligned with each other to define an array of multispectral image pixels. Various optical elements can be provided to facilitate imaging operations. Light ranging/imaging systems incorporating multispectral sensor arrays can operate in rotating and/or static modes.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: October 18, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl
  • Publication number: 20220291387
    Abstract: Systems and methods are provided for processing lidar data. The lidar data can be obtained in a particular manner that allows reconstruction of rectilinear images for which image processing can be applied from image to image. For instance, kernel-based image processing techniques can be used. Such processing techniques can use neighboring lidar and/or associated color pixels to adjust various values associated with the lidar signals. Such image processing of lidar and color pixels can be performed by dedicated circuitry, which may be on a same integrated circuit. Further, lidar pixels can be correlated to each other. For instance, classification techniques can identify lidar and/or associated color pixels as corresponding to the same object. The classification can be performed by an artificial intelligence (AI) coprocessor. Image processing techniques and classification techniques can be combined into a single system.
    Type: Application
    Filed: September 8, 2020
    Publication date: September 15, 2022
    Applicant: Ouster, Inc.
    Inventor: Angus Pacala
  • Publication number: 20220268893
    Abstract: A light ranging system including a shaft having a longitudinal axis; a light ranging device configured to rotate about the longitudinal axis of the shaft, the light ranging device including a light source configured to transmit light pulses to objects in a surrounding environment, and detector circuitry configured to detect reflected portions of the light pulses that are reflected from the objects in the surrounding environment and to compute ranging data based on the reflected portion of the light pulses; a base subsystem that does not rotate about the shaft; and an optical communications subsystem configured to provide an optical communications channel between the base subsystem and the light ranging device, the optical communications subsystem including one or more turret optical communication components connected to the detector circuitry and one or more base optical communication components connected to the base subsystem.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 25, 2022
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Patent number: 11422236
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a first transmitting optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the first transmitting optic and the pixel array.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: August 23, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Patent number: 11422265
    Abstract: Methods are provided for using a light ranging system of a vehicle. A computing system receives, from light ranging devices, ranging data including distance vectors to environmental surfaces. A distance vector can correspond to a pixel of a three-dimensional image stream. The system can identify a pose of a virtual camera relative to the light ranging devices. The light ranging devices are separated from the pose by first vectors that are used to translate some of the distance vectors using the first vectors. The system may determine colors associated with the translated distance vectors and display pixels of the three-dimensional image stream using the colors at pixel positions specified by the translated distance vectors. The system may use one or more vehicle models with the ranging data to provide semantic labels that describe a region that has been, or is likely to be, in a collision.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: August 23, 2022
    Assignee: Ouster, Inc.
    Inventors: Pierre Amelot, Daniel Lu, Angus Pacala, Kairen Wong
  • Publication number: 20220214454
    Abstract: An optical system for performing distance measurements comprising: a bulk transmitter optic having a focal plane; an illumination source comprising a plurality of light emitters aligned to project discrete beams of light through the bulk transmitter optic into a field ahead of the optical system; and a micro-optic channel array disposed between the illumination source and the bulk transmitter optic, the micro-optic channel array defining a plurality of micro-optic channels, each micro-optic channel including a micro-optic lens spaced apart from a light emitter in the plurality of light emitters with the micro-optic lens positioned to receive a light cone from the light emitter and configured to generate a reduced-size spot image of the emitter at a location that is displaced from the emitter and that coincides with the focal plane of the bulk transmitter optic
    Type: Application
    Filed: November 12, 2021
    Publication date: July 7, 2022
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin Shu
  • Publication number: 20220201267
    Abstract: An optical system for collecting distance information within a field is provided. The optical system may include lenses for collecting photons from a field and may include lenses for distributing photons to a field. The optical system may include lens tubes that collimate collected photons, optical filters that reject normally incident light outside of the operating wavelength, and pixels that detect incident photons. The optical system may further include illumination sources that output photons at an operating wavelength.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 23, 2022
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Publication number: 20220179071
    Abstract: A light ranging system can include a laser device and an imaging device having photosensors. The laser device illuminates a scene with laser pulse radiation that reflects off of objects in the scene. The reflections can vary greatly depending on the reflecting surface shape and reflectivity. The signal measured by photosensors can be filtered with a number of matched filter designed according to profiles of different reflected signals. A best matched filter can be identified, and hence information about the reflecting surface and accurate ranging information can be obtained. The laser pulse radiation can be emitted in coded pulses by allowing weights to different detection intervals. Other enhancements include staggering laser pulses and changing an operational status of photodetectors of a pixel sensor, as well as efficient signal processing using a sensor chip that includes processing circuits and photosensors.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 9, 2022
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Patent number: 11353556
    Abstract: An image sensing device that includes a lens housing; a bulk lens system coupled to the lens housing and configured to receive light from the surrounding environment and focus the received light to a focal plane, the bulk lens system comprising a first lens, a second lens, and a third lens mounted in the lens housing; wherein the first lens, the second lens, or the first lens and the second lens are plastic; and wherein the third lens is glass; an array of photosensors configured to receive light from the bulk lens system and detect reflected portions of the light pulses that are reflected from the objects in the surrounding environment; and a mount that mechanically couples the lens housing with the array of photosensors, wherein the lens housing, the bulk lens system, and the mount are configured to passively focus light from the bulk lens system onto the array of photosensors over a temperature range.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 7, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Patent number: 11340336
    Abstract: A light ranging system including a shaft having a longitudinal axis; a light ranging device configured to rotate about the longitudinal axis of the shaft, the light ranging device including a light source configured to transmit light pulses to objects in a surrounding environment, and detector circuitry configured to detect reflected portions of the light pulses that are reflected from the objects in the surrounding environment and to compute ranging data based on the reflected portion of the light pulses; a base subsystem that does not rotate about the shaft; and an optical communications subsystem configured to provide an optical communications channel between the base subsystem and the light ranging device, the optical communications subsystem including one or more turret optical communication components connected to the detector circuitry and one or more base optical communication components connected to the base subsystem.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 24, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Publication number: 20220120906
    Abstract: Embodiments describe an electronically scanning optical system including an emitter array configured to emit light into a field, a time of flight (TOF) sensor array configured to detect emitted light reflected back from the field, an image sensor array configured to detect ambient light in the field, where a field of view of the emitter array corresponds to a field of view of the TOF sensor array and at least a subset of a field of view of the image sensor array. The optical system further including an emitter controller configured to activate a subset of the plurality of light emitters at a time, a TOF sensor controller configured to synchronize the readout of individual TOF photosensors concurrently with the firing of corresponding light emitters, and an image sensor controller configured to capture an image that is representative of the field during the emission cycle.
    Type: Application
    Filed: September 13, 2021
    Publication date: April 21, 2022
    Applicant: Ouster, Inc.
    Inventor: Angus Pacala
  • Patent number: 11300665
    Abstract: A light ranging system including a shaft; a first circuit board assembly that includes a stator assembly comprising a plurality of stator elements arranged about the shaft on a surface of the first circuit board assembly; a second circuit board assembly rotationally coupled to the shaft, wherein the second circuit board assembly includes a rotor assembly comprising a plurality of rotor elements arranged about the shaft on a surface of the second circuit board assembly such that the plurality of rotor elements are aligned with and spaced apart from the plurality of stator elements; a stator driver circuit disposed on either the second or the first circuit board assemblies and configured to provide a drive signal to the plurality of stator elements, thereby imparting an electromagnetic force on the plurality of rotor elements to drive a rotation of the second circuit board assembly about the shaft; and a light ranging device mechanically coupled to the second circuit board assembly such that the light ranging d
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 12, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Publication number: 20220107395
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a first transmitting optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the first transmitting optic and the pixel array.
    Type: Application
    Filed: December 15, 2021
    Publication date: April 7, 2022
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Patent number: 11287515
    Abstract: A light ranging system including a shaft; a first circuit board assembly that includes a stator assembly comprising a plurality of stator elements arranged about the shaft on a surface of the first circuit board assembly; a second circuit board assembly rotationally coupled to the shaft, wherein the second circuit board assembly includes a rotor assembly comprising a plurality of rotor elements arranged about the shaft on a surface of the second circuit board assembly such that the plurality of rotor elements are aligned with and spaced apart from the plurality of stator elements; a stator driver circuit disposed on either the second or the first circuit board assemblies and configured to provide a drive signal to the plurality of stator elements, thereby imparting an electromagnetic force on the plurality of rotor elements to drive a rotation of the second circuit board assembly about the shaft; and a light ranging device mechanically coupled to the second circuit board assembly such that the light ranging d
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: March 29, 2022
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Publication number: 20220043128
    Abstract: An optical measurement system may include a light source and corresponding photosensor configured to emit and detect photons reflected from objects in a surrounding environment for optical measurements. An initial peak can be identified as resulting from reflections off a housing of the optical measurement system. This peak can be removed or used to calibrate measurement calculations of the system. Peaks resulting from reflections off surrounding objects can be processed using on-chip filters to identify potential peaks, and the unfiltered data can be passed to an off-chip processor for distance calculations and other measurements. A spatial filtering technique may be used to combine values from histograms for spatially adjacent pixels in a pixel array. This combination can be used to increase the confidence for distance measurements.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 10, 2022
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Marvin SHU