Patents by Inventor ANGUS PACALA

ANGUS PACALA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210274148
    Abstract: An optical system for collecting distance information within a field is provided. The optical system may include lenses for collecting photons from a field and may include lenses for distributing photons to a field. The optical system may include lenses that collimate photons passed by an aperture, optical filters that reject normally incident light outside of the operating wavelength, and pixels that detect incident photons. The optical system may further include illumination sources that output photons at an operating wavelength.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 2, 2021
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL
  • Patent number: 11105925
    Abstract: A light ranging system can include a laser device and an imaging device having photosensors. The laser device illuminates a scene with laser pulse radiation that reflects off of objects in the scene. The reflections can vary greatly depending on the reflecting surface shape and reflectivity. The signal measured by photosensors can be filtered with a number of matched filter designed according to profiles of different reflected signals. A best matched filter can be identified, and hence information about the reflecting surface and accurate ranging information can be obtained. The laser pulse radiation can be emitted in coded pulses by allowing weights to different detection intervals. Other enhancements include staggering laser pulses and changing an operational status of photodetectors of a pixel sensor, as well as efficient signal processing using a sensor chip that includes processing circuits and photosensors.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 31, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl
  • Publication number: 20210255281
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a first transmitting optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the first transmitting optic and the pixel array.
    Type: Application
    Filed: March 5, 2021
    Publication date: August 19, 2021
    Applicant: Ouster, Inc.
    Inventors: Angus PACALA, Mark FRICHTL, Marvin SHU, Eric YOUNGE
  • Patent number: 11086013
    Abstract: Embodiments describe optical imagers that include one or more micro-optic components. Some imagers can be passive imagers that include a light detection system for receiving ambient light from a field. Some imagers can be active imagers that include a light emission system in addition to the light detection system. The light emission system can be configured to emit light into the field such that emitted light is reflected off surfaces of an object in the field and received by the light detection system. In some embodiments, the light detection system and/or the light emission system includes micro-optic components for improving operational performance.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: August 10, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 11025885
    Abstract: An optical system for collecting distance information within a field is provided. The optical system may include lenses for collecting photons from a field and may include lenses for distributing photons to a field. The optical system may include lenses that collimate photons passed by an aperture, optical filters that reject normally incident light outside of the operating wavelength, and pixels that detect incident photons. The optical system may further include illumination sources that output photons at an operating wavelength.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: June 1, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 11016193
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: May 25, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 11016192
    Abstract: Embodiments describe a solid state electronic scanning LIDAR system that includes a scanning focal plane transmitting element and a scanning focal plane receiving element whose operations are synchronized so that the firing sequence of an emitter array in the transmitting element corresponds to a capturing sequence of a photosensor array in the receiving element. During operation, the emitter array can sequentially fire one or more light emitters into a scene and the reflected light can be received by a corresponding set of one or more photosensors through an aperture layer positioned in front of the photosensors. Each light emitter can correspond with an aperture in the aperture layer, and each aperture can correspond to a photosensor in the receiving element such that each light emitter corresponds with a specific photosensor in the receiving element.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: May 25, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 10969490
    Abstract: A light ranging system including a housing; a shaft defining an axis of rotation; a first circuit board assembly disposed within and coupled to the housing in a fixed relationship such that the first circuit board assembly is aligned along a first plane perpendicular to the axis of rotation, the first circuit board assembly including a plurality of first circuit elements disposed on a first circuit board; a second circuit board assembly spaced apart from the first circuit board assembly within the housing in a second plane parallel to the first plane and rotationally coupled to the shaft such that the second circuit board assembly rotates about the axis of rotation, the second circuit board assembly including a plurality of second circuit elements disposed on a second circuit board and aligned with and configured to function in wireless cooperation with at least one of the first plurality of circuit elements; and a light ranging device electrically connected to and coupled to rotate with the second circuit bo
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: April 6, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Patent number: 10948572
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a first transmitting optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the first transmitting optic and the pixel array.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: March 16, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Publication number: 20210041570
    Abstract: Methods and systems can augment 360 degree panoramic LIDAR results (e.g., from a spinning LIDAR system) with color obtained from color cameras. A color-pixel-lookup table can specify the correspondence between LIDAR pixels (depth/ranging pixels) and color pixels, which may be done at different viewing object distances. The operation of the color cameras can be triggered by the angular positions of the LIDAR system. For example, a color image of a particular camera can be captured when the LIDAR system is at a particular angular position, which can be predetermined based on properties of the cameras (e.g., shutter speed). Alternatively or in addition, a common internal clock can be used to assign timestamps to LIDAR and color pixels as they are captured. The corresponding color pixel(s), e.g., as determined using a color-pixel-lookup table, with the closest timestamp can be used for colorization.
    Type: Application
    Filed: October 9, 2020
    Publication date: February 11, 2021
    Inventor: Angus PACALA
  • Patent number: 10884126
    Abstract: A light ranging system can include a laser device and an imaging device having photosensors. The laser device illuminates a scene with laser pulse radiation that reflects off of objects in the scene. The reflections can vary greatly depending on the reflecting surface shape and reflectivity. The signal measured by photosensors can be filtered with a number of matched filter designed according to profiles of different reflected signals. A best matched filter can be identified, and hence information about the reflecting surface and accurate ranging information can be obtained. The laser pulse radiation can be emitted in coded pulses by allowing weights to different detection intervals. Other enhancements include staggering laser pulses and changing an operational status of photodetectors of a pixel sensor, as well as efficient signal processing using a sensor chip that includes processing circuits and photosensors.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: January 5, 2021
    Assignee: Ouster, Inc.
    Inventors: Marvin Shu, Angus Pacala, Mark Frichtl
  • Patent number: 10859682
    Abstract: Methods, systems, and devices are provided for calibrating a light ranging system and using the system to track environmental objects. In embodiments, the approach involves installing light ranging devices, such as lidar devices, on the vehicle exterior. The light ranging system may be calibrated using a calibration device to scan the vehicle exterior and construct a three-dimensional model of the vehicle exterior comprising the positions of the installed light ranging devices on the vehicle exterior. The calibrated light ranging system may use the model in conjunction with ranging data collected by the installed light ranging devices to track objects in the environment. In this way, the light ranging system may detect a proximity of environmental objects and help a driver of the vehicle avoid potential collisions. The light ranging system may further measure the vehicle exterior and thereby detect changes to the vehicle exterior.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 8, 2020
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Dmitri Garbuzov, Daniel Lu
  • Patent number: 10830892
    Abstract: A light ranging system including a housing; a shaft defining an axis of rotation; a first circuit board assembly disposed within and coupled to the housing in a fixed relationship such that the first circuit board assembly is aligned along a first plane perpendicular to the axis of rotation, the first circuit board assembly including a plurality of first circuit elements disposed on a first circuit board; a second circuit board assembly spaced apart from the first circuit board assembly within the housing in a second plane parallel to the first plane and rotationally coupled to the shaft such that the second circuit board assembly rotates about the axis of rotation, the second circuit board assembly including a plurality of second circuit elements disposed on a second circuit board and aligned with and configured to function in wireless cooperation with at least one of the first plurality of circuit elements; and a light ranging device electrically connected to and coupled to rotate with the second circuit bo
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: November 10, 2020
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Patent number: 10830888
    Abstract: A light ranging system can include a laser device and an imaging device having photosensors. The laser device illuminates a scene with laser pulse radiation that reflects off of objects in the scene. The reflections can vary greatly depending on the reflecting surface shape and reflectivity. The signal measured by photosensors can be filtered with a number of matched filter designed according to profiles of different reflected signals. A best matched filter can be identified, and hence information about the reflecting surface and accurate ranging information can be obtained. The laser pulse radiation can be emitted in coded pulses by allowing weights to different detection intervals. Other enhancements include staggering laser pulses and changing an operational status of photodetectors of a pixel sensor, as well as efficient signal processing using a sensor chip that includes processing circuits and photosensors.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: November 10, 2020
    Assignee: Ouster, Inc.
    Inventors: Marvin Shu, Angus Pacala, Mark Frichtl
  • Publication number: 20200341144
    Abstract: An optical measurement system includes a photosensor that includes one or more photosensitive elements. Each of the photosensitive elements may generate signals when a photon is detected, and the number of photons detected for each photosensor may be accumulated in an integration register. The integration register may accumulate photon counts independent of a parallel data path that stores photon counts in time bins based on photon arrival times to form a histogram representation. The total photon count in the integration register can be used to estimate ambient background light and properly set signal thresholds for detecting reflected light signals represented in the histogram.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Applicant: Ouster, Inc.
    Inventors: Angus Pacala, Marvin Liu Shu
  • Patent number: 10809380
    Abstract: Methods and systems can augment 360 degree panoramic LIDAR results (e.g., from a spinning LIDAR system) with color obtained from color cameras. A color-pixel-lookup table can specify the correspondence between LIDAR pixels (depth/ranging pixels) and color pixels, which may be done at different viewing object distances. The operation of the color cameras can be triggered by the angular positions of the LIDAR system. For example, a color image of a particular camera can be captured when the LIDAR system is at a particular angular position, which can be predetermined based on properties of the cameras (e.g., shutter speed). Alternatively or in addition, a common internal clock can be used to assign timestamps to LIDAR and color pixels as they are captured. The corresponding color pixel(s), e.g., as determined using a color-pixel-lookup table, with the closest timestamp can be used for colorization.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: October 20, 2020
    Assignee: Ouster, Inc.
    Inventor: Angus Pacala
  • Patent number: 10809359
    Abstract: Optical systems and methods for collecting distance information are disclosed. An example optical system includes a bulk receiving optic, a plurality of illumination sources, a pixel array comprising at least a first column of pixels and a second column of pixels, each pixel in the first column of pixels being offset from an adjacent pixel in the first column of pixels by a first pixel pitch, the second column of pixels being horizontally offset from the first column of pixels by the first pixel pitch, the second column of pixels being vertically offset from the first column of pixels by a first vertical pitch; and a set of input channels interposed between the bulk receiving optic and the pixel array.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: October 20, 2020
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Marvin Shu, Eric Younge
  • Publication number: 20200284913
    Abstract: Methods are provided for using a light ranging system of a vehicle. A computing system receives, from light ranging devices, ranging data including distance vectors to environmental surfaces. A distance vector can correspond to a pixel of a three-dimensional image stream. The system can identify a pose of a virtual camera relative to the light ranging devices. The light ranging devices are separated from the pose by first vectors that are used to translate some of the distance vectors using the first vectors. The system may determine colors associated with the translated distance vectors and display pixels of the three-dimensional image stream using the colors at pixel positions specified by the translated distance vectors. The system may use one or more vehicle models with the ranging data to provide semantic labels that describe a region that has been, or is likely to be, in a collision.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Applicant: Ouster, Inc.
    Inventors: Pierre AMELOT, Daniel LU, Angus PACALA, Kairen Wong
  • Patent number: 10760957
    Abstract: A multispectral sensor array can include a combination of ranging sensor channels (e.g., LIDAR sensor channels) and ambient-light sensor channels tuned to detect ambient light having a channel-specific property (e.g., color). The sensor channels can be arranged and spaced to provide multispectral images of a field of view in which the multispectral images from different sensors are inherently aligned with each other to define an array of multispectral image pixels. Various optical elements can be provided to facilitate imaging operations. Light ranging/imaging systems incorporating multispectral sensor arrays can operate in rotating and/or static modes.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: September 1, 2020
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 10739189
    Abstract: A multispectral sensor array can include a combination of ranging sensor channels (e.g., LIDAR sensor channels) and ambient-light sensor channels tuned to detect ambient light having a channel-specific property (e.g., color). The sensor channels can be arranged and spaced to provide multispectral images of a field of view in which the multispectral images from different sensors are inherently aligned with each other to define an array of multispectral image pixels. Various optical elements can be provided to facilitate imaging operations. Light ranging/imaging systems incorporating multispectral sensor arrays can operate in rotating and/or static modes.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: August 11, 2020
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl