Patents by Inventor Ani Xavier

Ani Xavier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956340
    Abstract: An example system includes: interleaving circuitry including a data input, a plurality of data outputs, and a plurality of clock inputs, the data input coupled to the received data input and each of the plurality of clock inputs coupled to one of the plurality of receiver clock outputs; and handoff circuitry coupled to the interleaving circuitry, the handoff circuitry including: comparison circuitry coupled to the clock generation circuitry and configured to compare the plurality of receiver clocks to the transmission clock; clock configuration circuitry coupled to the comparison circuitry and configured to select one of the plurality of receiver clocks based on the comparison circuitry; and a plurality of flip-flops coupled to the clock configuration circuitry and configured to convert the plurality of data outputs from the plurality of receiver clocks to the transmission clock to generate a plurality of transmission data streams based on the one of the plurality of receiver clocks selected by the clock conf
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Ani Xavier, Jagannathan Venkataraman
  • Publication number: 20240113851
    Abstract: An example system includes: interleaving circuitry including a data input, a plurality of data outputs, and a plurality of clock inputs, the data input coupled to the received data input and each of the plurality of clock inputs coupled to one of the plurality of receiver clock outputs; and handoff circuitry coupled to the interleaving circuitry, the handoff circuitry including: comparison circuitry coupled to the clock generation circuitry and configured to compare the plurality of receiver clocks to the transmission clock; clock configuration circuitry coupled to the comparison circuitry and configured to select one of the plurality of receiver clocks based on the comparison circuitry; and a plurality of flip-flops coupled to the clock configuration circuitry and configured to convert the plurality of data outputs from the plurality of receiver clocks to the transmission clock to generate a plurality of transmission data streams based on the one of the plurality of receiver clocks selected by the clock conf
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Ani Xavier, Jagannathan Venkataraman
  • Publication number: 20240030926
    Abstract: In described examples, a retimer includes a reference voltage generator, first, second, third, and fourth comparators, a hit sensor, a window results comparison circuit, and a window control circuit. First inputs of the first, second, third, and fourth comparators receive samples of a data stream. First, second, third, and fourth outputs of the reference voltage generator are coupled to respective second inputs of the first, second, third, and fourth comparators. The third and fourth comparators output to, respectively, first and second inputs of the hit sensor. The hit sensor outputs to an input of the window results comparison circuit. The window results comparison circuit outputs to an input of the window control circuit. The window control circuit outputs to an input of the reference voltage generator.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Inventors: Ani Xavier, Jagannathan Venkataraman
  • Patent number: 11855816
    Abstract: A signal transmission system includes an equalization filter configured to filter an input signal based at least in part on a feedback signal, a slicer configured to generate data based on the filtered input signal at a plurality of different phases, a synchronizer configured to compute a phase delay between the input signal at each of the different phases and the data, and a pattern generator configured to generate the feedback signal at a phase adjusted by the phase delay.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: December 26, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Rakesh Manjunath, Aravind Ganesan, Ani Xavier, Jagannathan Venkataraman, Abhishek Agrawal, Charls Babu, Aditya Kumar
  • Patent number: 11722142
    Abstract: In described examples, a charge pump includes an output, first and second transistors, a control circuit, a multiplexer, and a calibration circuit. The first transistor's drain is coupled to the output. The second transistor's drain is part of a current path separate from a current path that includes the first transistor's drain. The control circuit generates a control signal in response to voltages at the gates of the first and second transistors. First and second inputs of the multiplexer are respectively coupled to sources of the first and second transistors. A control input of the multiplexer is coupled to receive the control signal. A first input of the calibration circuit is coupled to an output of the multiplexer. A second input of the calibration circuit receives a reference voltage. First and second outputs of the calibration circuit are respectively coupled to body terminals of the first and second transistors.
    Type: Grant
    Filed: June 25, 2022
    Date of Patent: August 8, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Jagannathan Venkataraman, Ani Xavier, Shyam Subramanian
  • Publication number: 20230054834
    Abstract: A signal transmission system includes an equalization filter configured to filter an input signal based at least in part on a feedback signal, a slicer configured to generate data based on the filtered input signal at a plurality of different phases, a synchronizer configured to compute a phase delay between the input signal at each of the different phases and the data, and a pattern generator configured to generate the feedback signal at a phase adjusted by the phase delay.
    Type: Application
    Filed: January 3, 2022
    Publication date: February 23, 2023
    Inventors: Rakesh Manjunath, Aravind Ganesan, Ani Xavier, Jagannathan Venkataraman, Abhishek Agrawal, Charls Babu, Aditya Kumar
  • Patent number: 11469928
    Abstract: A receiver circuit comprising an equalizer and a method of correcting offset in the equalizer. In an example, the equalizer includes a plurality of delay stages for sampling and storing a sequence input samples, and a plurality of coefficient gain stages, each coupled to a corresponding delay stage to apply a gain corresponding to a coefficient value. The outputs of the coefficient gain stages are summed to produce a weighted sum for quantization by a slicer. Offset correction circuitry is provided, including memory storing a look-up table (LUT) for each coefficient gain stage, each storing offset correction values corresponding to the available coefficient values for the coefficient gain stage. Addressing circuitry retrieves the offset correction values for the coefficient values currently selected for each gain stage, and applies an offset correction corresponding to the sum of the retrieved offset correction values.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 11, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ani Xavier, Jagannathan Venkataraman, Nagalinga Swamy Basayya Aremallapur, Aviral Singhal, Arun Mohan, Rakesh Chikkanayakanahalli Manjunath, Aravind Ganesan, Harshavardhan Adepu
  • Patent number: 11416021
    Abstract: A first logic gate has a first input coupled to a first circuit input or a second circuit input, a second input selectively coupled to a third circuit input or a fourth circuit input, and a first output. The first output has a signal with a duty cycle that is a function of a phase difference between a first signal on the first input and a second signal on the second input. A second logic gate has a third input coupled to the third circuit input or the fourth circuit input, a fourth input coupled to the second circuit input or the fourth circuit input, and a second output. The second output has a signal with a duty cycle that is a function of a phase difference between a third signal on the third input and a fourth signal on the fourth input.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: August 16, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ani Xavier, Jagannathan Venkataraman, Raviteja Velisetti
  • Publication number: 20220197330
    Abstract: A first logic gate has a first input coupled to a first circuit input or a second circuit input, a second input selectively coupled to a third circuit input or a fourth circuit input, and a first output. The first output has a signal with a duty cycle that is a function of a phase difference between a first signal on the first input and a second signal on the second input. A second logic gate has a third input coupled to the third circuit input or the fourth circuit input, a fourth input coupled to the second circuit input or the fourth circuit input, and a second output. The second output has a signal with a duty cycle that is a function of a phase difference between a third signal on the third input and a fourth signal on the fourth input.
    Type: Application
    Filed: April 30, 2021
    Publication date: June 23, 2022
    Inventors: Ani XAVIER, Jagannathan VENKATARAMAN, Raviteja VELISETTI
  • Publication number: 20220182266
    Abstract: A receiver circuit comprising an equalizer and a method of correcting offset in the equalizer. In an example, the equalizer includes a plurality of delay stages for sampling and storing a sequence input samples, and a plurality of coefficient gain stages, each coupled to a corresponding delay stage to apply a gain corresponding to a coefficient value. The outputs of the coefficient gain stages are summed to produce a weighted sum for quantization by a slicer. Offset correction circuitry is provided, including memory storing a look-up table (LUT) for each coefficient gain stage, each storing offset correction values corresponding to the available coefficient values for the coefficient gain stage. Addressing circuitry retrieves the offset correction values for the coefficient values currently selected for each gain stage, and applies an offset correction corresponding to the sum of the retrieved offset correction values.
    Type: Application
    Filed: June 30, 2021
    Publication date: June 9, 2022
    Inventors: Ani Xavier, Jagannathan Venkataraman, Nagalinga Swamy Basayya Aremallapur, Aviral Singhal, Arun Mohan, Rakesh Chikkanayakanahalli Manjunath, Aravind Ganesan, Harshavardhan Adepu
  • Patent number: 11063793
    Abstract: An equalization circuit includes a feed-forward equalization (FFE) circuit and a decision feedback equalization (DFE) circuit. The FFE circuit includes a first FFE tap, a second FFE tap coupled to the first FFE tap, and a variable gain amplifier. The variable gain amplifier includes an input and a programmable capacitor. The input is coupled to the first FFE tap and the second FFE tap. The programmable capacitor is coupled to the input. The DFE circuit includes an input and a DFE tap. The input is coupled to the variable gain amplifier. The DFE tap is coupled to the input of the variable gain amplifier.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: July 13, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ani Xavier, Jagannathan Venkataraman, Sandeep Oswal
  • Publication number: 20190363679
    Abstract: In some examples, an amplifier stage includes a voltage-gain amplifier stage and a negative capacitance circuit coupled to the voltage-gain amplifier stage, the negative capacitance circuit comprising a first transistor that provides a first temperature-biased current.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Ani XAVIER, Neeraj SHRIVASTAVA, Arun MOHAN, Shagun DUSAD
  • Patent number: 10439628
    Abstract: In some examples, a system includes a first transistor comprising a first source terminal coupled to a first input terminal, a first drain terminal coupled to a first top plate sampling capacitor, and a first gate terminal. The system also includes a first input-dependent dual clock boost circuit coupled to the first input terminal via a first boost circuit input and to the first gate terminal via a first boost circuit output. The system further includes a second transistor comprising a second source terminal coupled to a second input terminal, a second drain terminal coupled to a second top plate sampling capacitor, and a second gate terminal. The system also includes a second input-dependent dual clock boost circuit coupled to the second input terminal via a second boost circuit input and to the second gate terminal of the second transistor via a second boost circuit output.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: October 8, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ani Xavier, Neeraj Shrivastava, Arun Mohan
  • Patent number: 10425042
    Abstract: In some examples, an amplifier stage includes a voltage-gain amplifier stage and a negative capacitance circuit coupled to the voltage-gain amplifier stage, the negative capacitance circuit comprising a first transistor that provides a first temperature-biased current.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: September 24, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ani Xavier, Neeraj Shrivastava, Arun Mohan, Shagun Dusad
  • Patent number: 10396766
    Abstract: In some examples, an apparatus includes a plurality of first transistors coupled to a first input terminal and a first output terminal. The apparatus also includes a plurality of second transistors coupled to a second input terminal and a second output terminal. The apparatus further includes a plurality of first dummy transistors coupled to the first input terminal and the second output terminal. The apparatus also includes a plurality of second dummy transistors coupled to the second input terminal and the first output terminal.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: August 27, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Basavaraj G. Gorguddi, Ani Xavier
  • Publication number: 20190207617
    Abstract: In some examples, a system includes a first transistor comprising a first source terminal coupled to a first input terminal, a first drain terminal coupled to a first top plate sampling capacitor, and a first gate terminal. The system also includes a first input-dependent dual clock boost circuit coupled to the first input terminal via a first boost circuit input and to the first gate terminal via a first boost circuit output. The system further includes a second transistor comprising a second source terminal coupled to a second input terminal, a second drain terminal coupled to a second top plate sampling capacitor, and a second gate terminal. The system also includes a second input-dependent dual clock boost circuit coupled to the second input terminal via a second boost circuit input and to the second gate terminal of the second transistor via a second boost circuit output.
    Type: Application
    Filed: August 20, 2018
    Publication date: July 4, 2019
    Inventors: Ani XAVIER, Neeraj SHRIVASTAVA, Arun MOHAN
  • Publication number: 20190207564
    Abstract: In some examples, an amplifier stage includes a voltage-gain amplifier stage and a negative capacitance circuit coupled to the voltage-gain amplifier stage, the negative capacitance circuit comprising a first transistor that provides a first temperature-biased current.
    Type: Application
    Filed: December 30, 2017
    Publication date: July 4, 2019
    Inventors: Ani Xavier, Neeraj SHRIVASTAVA, Arun MOHAN, Shagun DUSAD
  • Publication number: 20190199332
    Abstract: In some examples, an apparatus includes a plurality of first transistors coupled to a first input terminal and a first output terminal. The apparatus also includes a plurality of second transistors coupled to a second input terminal and a second output terminal. The apparatus further includes a plurality of first dummy transistors coupled to the first input terminal and the second output terminal. The apparatus also includes a plurality of second dummy transistors coupled to the second input terminal and the first output terminal.
    Type: Application
    Filed: December 26, 2017
    Publication date: June 27, 2019
    Inventors: Basavaraj G. GORGUDDI, Ani XAVIER
  • Patent number: 10320405
    Abstract: In described examples, an analog to digital converter (ADC) includes a flash ADC. The flash ADC generates a flash output in response to an input signal, and an error correction block generates a known pattern. A selector block is coupled to the flash ADC and the error correction block, and generates a plurality of selected signals in response to the flash output and the known pattern. A digital to analog converter (DAC) is coupled to the selector block, and generates a coarse analog signal in response to the plurality of selected signals. A residue amplifier is coupled to the DAC, and generates a residual analog signal in response to the coarse analog signal, the input signal and an analog PRBS (pseudo random binary sequence) signal. A residual ADC generates a residual code in response to the residual analog signal.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 11, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Srinivas Kumar Reddy Naru, Visvesvaraya Pentakota Appala, Shagun Dusad, Neeraj Shrivastava, Viswanathan Nagarajan, Ani Xavier, Rishi Soundararajan, Sai Aditya Nurani, Roswald Francis
  • Patent number: 10084466
    Abstract: In some examples, a system includes a first transistor comprising a first source terminal coupled to a first input terminal, a first drain terminal coupled to a first top plate sampling capacitor, and a first gate terminal. The system also includes a first input-dependent dual clock boost circuit coupled to the first input terminal via a first boost circuit input and to the first gate terminal via a first boost circuit output. The system further includes a second transistor comprising a second source terminal coupled to a second input terminal, a second drain terminal coupled to a second top plate sampling capacitor, and a second gate terminal. The system also includes a second input-dependent dual clock boost circuit coupled to the second input terminal via a second boost circuit input and to the second gate terminal of the second transistor via a second boost circuit output.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 25, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ani Xavier, Neeraj Shrivastava, Arun Mohan