Patents by Inventor Anil K. Sachdev

Anil K. Sachdev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10682723
    Abstract: A method of resistance spot welding a steel workpiece and an aluminum or aluminum alloy workpiece, and a welding electrode used therein. In one step of the method a workpiece stack-up is provided. The workpiece stack-up includes a steel workpiece and an aluminum or aluminum alloy workpiece. Another step of the method involves contacting the aluminum or aluminum alloy workpiece with a weld face of the welding electrode. The welding electrode has a body and an insert. The insert is composed of a material having an electrical resistivity that is greater than an electrical resistivity of the material of the body. The weld face has a first section defined by a surface of the insert and has a second section defined by a surface of the body. Both the first and second sections make surface-to-surface contact with the aluminum or aluminum alloy workpiece amid resistance spot welding.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: June 16, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Blair E. Carlson, James G. Schroth, David S. Yang, Anil K. Sachdev
  • Publication number: 20200156134
    Abstract: A thermal-assisted method deforms a sheet metal assembly having constrained ends. A focus bending area located between the constrained ends is heated. The focus bending area is bent while the sheet metal assembly is within an elevated bending temperature range. A sheet metal assembly may be formed by this method, which includes an outer metal sheet and an inner metal sheet fixed together to form constrained ends. The sheet metal assembly has a bend formed therein between the first and second constrained ends, wherein each metal sheet is bent at the bend with a maximum gap between the inner and outer metal sheets at the bend. The maximum gap is no greater than five times the thickness of one of the inner and outer metal sheets, and the bend has a radius less than three times the thickness of one of the inner and outer sheets.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Inventors: Anil K. Sachdev, John E. Carsley, Robert N. Saje
  • Publication number: 20200123640
    Abstract: A precipitation hardenable aluminum alloy is disclosed along with a precipitation hardened form of the aluminum alloy and a method of manufacturing an aluminum alloy article from the precipitation hardenable aluminum alloy. The disclosed precipitation hardenable aluminum alloy has a composition that includes, on a weight percent (wt %) basis, 8%-13% zinc, 1.5%-5% magnesium, 0%-5% copper, 0%-2% of zirconium, chromium, or zirconium and chromium in total, and the balance aluminum with no more than 0.5% impurities. The alloy composition is adaptable to a wide range of manufacturing processes including additive manufacturing. The composition of the aluminum alloy also enables the dispersion of strengthening precipitate phases selected from an ?-phase precipitate, a ?-phase precipitate, and a T-phase precipitate, while being free of a S-phase precipitate, when precipitation hardened.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 23, 2020
    Inventors: Andrew C. Bobel, Anil K. Sachdev
  • Patent number: 10618107
    Abstract: Methods of forming a high-strength metal alloy precursor by tailor-casting strips having a tailored thickness across a width of a strip material are provided. The tailor-cast strips have varying thickness throughout the width, which can then be further tailor rolled to a final required thickness profile/tailored thickness. Such tailor-casting method can be conducted by contacting a patterned surface of a casting roller or a casting block with a liquid high-strength metal alloy in a continuous casting process. The present disclosure provides methods of continuously casting a strip having varying thickness across the width allows for improved product in subsequent processing, like tailor rolling. Methods of making a high-strength metal alloy structural automotive component from a tailor-cast blank having a tailored thickness are also provided.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Tyson W. Brown, Anil K. Sachdev
  • Publication number: 20200061700
    Abstract: Systems and methods for additive manufacturing of a metallic component using a metal-powder paste are described. The metal-powder paste is a mixture including a non-uniform metal powder and a flowable additive. The metal-powder paste is applied to a surface of a substrate and spread to thereby produce a uniform-thickness layer in areas corresponding to the metallic component. The flowable additive is driven off using thermal energy to thereby form a layer of the non-uniform metal powder having a uniform thickness. The non-uniform metal powder is then fused to the substrate to thereby form the metallic component.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Tyson W. Brown, Anil K. Sachdev, William R. Rodgers
  • Patent number: 10514036
    Abstract: A rotor for a positive displacement compressor assembly having a housing defining an inlet, an outlet, and a rotor cavity in communication with the inlet and the outlet. The rotor may comprise a rotor body and a porous inner core enclosed within the rotor body. The rotor may comprise a tapered rotor body having an outer radius that decreases from a first end to a second end thereof. In one form, the positive displacement compressor assembly may comprise a supercharger assembly for an internal combustion engine.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: December 24, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Tyson W. Brown, Anil K. Sachdev, Carnell E. Williams
  • Patent number: 10487868
    Abstract: In various aspects, a lightweight connecting rod for an internal combustion engine is provided. The lightweight connecting rod has one or more of: hollow regions, lattice regions, or weight reduction apertures. The connecting rod may be made via an additive manufacturing process. The connecting rod includes a first end, a second end, and an arm. The first end is configured to be pivotally connected to a piston. The second end is configured to be pivotally connected to a crankshaft. The arm extends between the first end and the second end. The arm includes a peripheral wall. The peripheral wall has an outer surface, an inner surface, and an interior region. The interior region is defined be the inner surface. The interior region includes at least one void space. The void space is a lattice structure or a hollow region.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: November 26, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Tyson W. Brown, Anil K. Sachdev, Alin C. Dragoiu
  • Patent number: 10487741
    Abstract: A turbocharger having a turbo vane, an air compressor, and a hollow shaft integrally formed with one of the turbo vane and the air compressor. The turbo vane has a plurality of turbo blades extending from a hollow, central turbo hub. The air compressor has a plurality of compressor blades extending from a hollow, central compressor hub. The hollow shaft is in fluid communication with the air compressor so as to communicate cool air from the air compressor to the turbo vane.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 26, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Tyson W. Brown, Carnell E. Williams, Anil K. Sachdev
  • Publication number: 20190348202
    Abstract: A three-dimensional object made of a bulk nitride, carbide, or boride-containing material may be manufactured using a powder bed fusion additive manufacturing technique. A layer of powder feed material may be distributed over a solid substrate and scanned with a high-energy laser beam to locally melt selective regions of the layer and form a pool of molten feed material. The pool of molten feed material may be exposed to gaseous nitrogen, carbon, or boron to respectively dissolve nitride, carbide, or boride ions into the pool of molten feed material to produce a molten nitrogen, carbon, or boron-containing solution. The molten nitrogen, carbon, or boron-containing solution may cool and solidify into a solid layer of fused nitride, carbide, or boride-containing material. In one form, the three-dimensional object may comprise a permanent magnet made up of a plurality of solid layers of fused iron nitride material having a magnetic Fe16N2 phase.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 14, 2019
    Inventors: Anil K. Sachdev, Frederick E. Pinkerton, Raja K. Mishra, Tyson W. Brown
  • Patent number: 10465603
    Abstract: Turbochargers include a compressor comprising a compressor body extending from a compressor back face and a plurality of blades extending from the compressor body, a turbine comprising a turbine body extending from a turbine back face and a plurality of blades extending from the turbine body, and a shaft coupled at a first end to the compressor back face and at a second end to the turbine back face. The shaft includes an internal passage extending from the first end towards the second end in fluid communication with the compressor blades and one or more fans disposed within the internal passage and configured to draw air toward the second end of the shaft. The internal passage of the shaft is in fluid communication with the compressor blades via one or more bleed air passages, which can be biased towards an outer diameter of the compressor body.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 5, 2019
    Inventors: Anil K. Sachdev, Tyson W. Brown
  • Patent number: 10460871
    Abstract: A method for fabricating a non-planar magnet includes extruding a precursor material including neodymium iron boron crystalline grains into an original anisotropic neodymium iron boron permanent magnet having an original shape, wherein the original anisotropic neodymium iron boron permanent magnet has at least about 90 percent neodymium iron boron magnetic material by volume. The original anisotropic neodymium iron boron permanent magnet is heated to a deformation temperature. The original anisotropic neodymium iron boron permanent magnet is deformed into a reshaped anisotropic neodymium iron boron permanent magnet having a second shape substantially different from the original shape using heated tooling to apply a deformation load to the original anisotropic neodymium iron boron permanent magnet.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: October 29, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Frederick E. Pinkerton, Anil K. Sachdev
  • Patent number: 10442241
    Abstract: A material and method for manufacturing components. The method includes squeeze casting the material into a component of a desired shape and flow-forming the component that has been squeeze cast to refine the shape of the component. The method also includes heat treating the component to enhance the microstructure of the component and machining the component to further refine the shape.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: October 15, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Gao, Bin Hu, Jianfeng Wang, Anil K. Sachdev
  • Patent number: 10435773
    Abstract: High-strength, lightweight alloy components, such as automotive components, capable of high temperature performance comprising aluminum, silicon, and iron and/or nickel are provided, along with methods of making such high-strength, lightweight alloy components. A high-energy stream, such as a laser or electron beam, may be selectively directed towards a precursor material to melt a portion of the precursor material in a localized region. The molten precursor material is cooled at a rate of greater than or equal to about 1.0×105 K/second to form a solid high-strength, lightweight alloy component comprising a stable ternary cubic phase having high heat resistance and high strength. The stable ternary phase may be AlxFeySiz, where x ranges from about 4 to about 5 or about 7.2 to about 7.6, y is about 1.5 to about 2.2, and z is about 1. The stable ternary phase may also be Al6Ni3Si.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 8, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhongyi Liu, Anil K. Sachdev
  • Publication number: 20190291182
    Abstract: A three-dimensional aluminum alloy part may be manufactured by a process in which a layer of aluminum alloy powder feed material is distributed over a substrate and scanned with a high-energy laser or electron beam in selective regions corresponding to a cross-section of the aluminum alloy part being formed. During the manufacturing process, the selective regions may melt and form a pool of molten aluminum alloy material. Thereafter, the pool of molten aluminum alloy material may cool and solidify into a solid layer of fused aluminum alloy material. During solidification of the pool of molten aluminum alloy material, solid phase particles may form within a solution of liquid phase aluminum prior to formation of solid phase aluminum dendrites. The resulting aluminum alloy part may exhibit a polycrystalline structure that predominantly includes a plurality of equiaxed grains, instead of columnar grains.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Andrew C. Bobel, Tyson W. Brown, Anil K. Sachdev
  • Patent number: 10421148
    Abstract: A method of resistance spot welding a workpiece stack-up that includes an aluminum workpiece and an adjacent overlapping steel workpiece is disclosed. The method uses a first welding electrode positioned proximate the aluminum workpiece and a second welding electrode positioned proximate the steel workpiece to effectuate the spot welding process. In an effort to positively affect the strength of the ultimately-formed weld joint, external heat may be supplied to the first welding electrode by an external heating source disposed in heat transfer relation with the first welding electrode either before or after, or both before or after, an electrical current is passed between the first and second welding electrodes to create a molten aluminum weld pool within the aluminum workpiece.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: September 24, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, David S. Yang, Anil K. Sachdev
  • Publication number: 20190264612
    Abstract: A turbocharger having a turbo vane, an air compressor, and a hollow shaft integrally formed with one of the turbo vane and the air compressor. The turbo vane has a plurality of turbo blades extending from a hollow, central turbo hub. The air compressor has a plurality of compressor blades extending from a hollow, central compressor hub. The hollow shaft is in fluid communication with the air compressor so as to communicate cool air from the air compressor to the turbo vane.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Inventors: Tyson W. Brown, Carnell E. Williams, Anil K. Sachdev
  • Patent number: 10384252
    Abstract: Methods suitable for forming complex parts from work-hardened sheet materials of limited formability are described. The formability of the work-hardened sheet is enhanced by forming at elevated temperature. The forming temperature is preferably selected to minimally undo the effects of work hardening so that the formed part is of higher strength than a like part formed from an annealed sheet. The method is applicable to age-hardening and non-age-hardening aluminum and magnesium alloys.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: August 20, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anil K. Sachdev, John T. Carter, Raja K. Mishra, John E. Carsley
  • Patent number: 10378599
    Abstract: A brake rotor comprising a brake pad wear surface; a hat surface; and a decorative insert comprising an insert material, the decorative insert disposed on the brake pad wear surface, the hat surface, or both; wherein at least one of a friction coefficient between the decorative insert and a brake pad is substantially the same as a friction coefficient between the brake pad wear surface and the brake pad, a wear rate of the decorative insert is substantially the same as or greater than a wear rate of the brake pad wear surface, or a wear rate of the decorative insert is substantially the same as or greater than a wear rate of the hat surface; and at least a portion of the decorative insert is visible on the brake pad wear surface, the hat surface, or both.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: August 13, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher J. Mettrick, Mark T. Riefe, Michael L. Holly, James A. Webster, Michael J. Walker, Anil K. Sachdev
  • Publication number: 20190226069
    Abstract: High-strength, lightweight alloy components, such as automotive components, capable of high temperature performance comprising aluminum, silicon, and iron and/or nickel are provided, along with methods of making such high-strength, lightweight alloy components. A high-energy stream, such as a laser or electron beam, may be selectively directed towards a precursor material to melt a portion of the precursor material in a localized region. The molten precursor material is cooled at a rate of greater than or equal to about 1.0×105 K/second to form a solid high-strength, lightweight alloy component comprising a stable ternary cubic phase having high heat resistance and high strength. The stable ternary phase may be AlxFeySiz, where x ranges from about 4 to about 5 or about 7.2 to about 7.6, y is about 1.5 to about 2.2, and z is about 1. The stable ternary phase may also be Al6Ni3Si.
    Type: Application
    Filed: April 4, 2019
    Publication date: July 25, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Zhongyi Liu, Anil K. Sachdev
  • Patent number: 10294552
    Abstract: Methods of making high-strength, lightweight alloy components capable of high temperature performance comprising aluminum, silicon, and iron and/or nickel are provided. A high-energy stream, such as a laser or electron beam, may be selectively directed towards a precursor material to melt a portion of the precursor material in a localized region. The molten precursor material is cooled at a rate of greater than or equal to about 1.0×105 K/second to form a solid high-strength, lightweight alloy component comprising a stable ternary cubic phase having high heat resistance and high strength. The stable ternary phase may be AlxFeySiz, where x ranges from about 4 to about 5 or about 7.2 to about 7.6, y is about 1.5 to about 2.2, and z is about 1. The stable ternary phase may also be Al6Ni3Si. Materials and components, such as automotive components, made from such methods are also provided.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: May 21, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhongyi Liu, Anil K. Sachdev