Patents by Inventor Anindya Sarkar

Anindya Sarkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200176103
    Abstract: The disclosure relates to devices, systems and methods for image registration and annotation. The devices include computer software products for aligning whole slide digital images on a common grid and transferring annotations from one aligned image to another aligned image on the basis of matching tissue structure. The systems include computer-implemented systems such as work stations and networked computers for accomplishing the tissue-structure based image registration and cross-image annotation. The methods include processes for aligning digital images corresponding to adjacent tissue sections on a common grid based on tissue structure, and transferring annotations from one of the adjacent tissue images to another of the adjacent tissue images.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 4, 2020
    Applicant: Ventana Medical Systems, Inc.
    Inventors: Srinivas Chukka, Anindya Sarkar, Quan Yuan
  • Patent number: 10650221
    Abstract: The subject disclosure presents systems and methods for receiving a plurality of assay information along with a query for one or more features of interest, and projecting anatomical information from an anatomical assay onto a staining assay, for example an immunohistochemical (IHC) assay that is commonly registered with the anatomical assay, to locate or determine features appropriate for analysis. The anatomical information may be used to generate a mask that is projected on one or more commonly registered staining assays. A location of the feature of interest in the staining assay may be correlated with the anatomical context provided by the mask, with any features of interest that match the anatomical mask being selected or indicated as appropriate for analysis.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: May 12, 2020
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Srinivas Chukka, Anindya Sarkar, Joerg Bredno
  • Publication number: 20200117883
    Abstract: A computer-based specimen analyzer (10) is configured to detect a level of expression of genes in a cell sample by detecting dots that represent differently stained genes and chromosomes in a cell. The color of the stained genes and the chromosomes is enhanced and filtered to produce a dot mask that defines areas in the image that are genes, chromosomes, or non-genetic material. Metrics are determined for the dots and/or pixels in the image of the cell in areas corresponding to the dots. The metrics are fed to a classifier that separates genes from chromosomes. The results of the classifier are counted to estimate the expression level of genes in the tissue samples.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Pascal Bamford, Srinivas Chukka, Jim F. Martin, Anindya Sarkar, Olcay Sertel, Ellen Suzue, Harshal Varangaonkar
  • Patent number: 10621412
    Abstract: The present disclosures relates to a method of detecting, classifying, and counting dots in an image of a tissue specimen comprising detecting dots in an image of the tissue sample that meet criteria for absorbance strength, black unmixed image channel strength, red unmixed image channel strength, and a difference of Gaussian threshold, wherein the detected dots correspond to in situ hybridization signals in the tissue samples; classifying the detected dots as belonging to a black in situ hybridization signal or to a red in situ hybridization signal; and calculating a ratio of those dots belonging to the black in situ hybridization signal and those belonging to the red in situ hybridization signal.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: April 14, 2020
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Anindya Sarkar, Jim Martin
  • Publication number: 20200043134
    Abstract: Techniques are provided for stitching tile images. A local registration can be performed to determine spatial relationships between pairs of adjacent tile images, in which the spatial relationships may be determined using normalized cross correlation (NCC) scores computed within a multi-resolution framework. A global placement can be performed to position all scanned tile images relative to one another. The global placement is determined with weighted least squares utilizing the determined spatial relationships between all adjacent greyscale tile images and the NCC scores as weights.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Inventors: Jim MARTIN, Anindya SARKAR
  • Publication number: 20200020125
    Abstract: A method and system for measuring the alignment between a substrate and a platform upon which it is disposed by using image processing algorithms are described herein. These algorithms automate the detection of edges of a microscope slide and the platform in a digital image. A reference line pattern in an image of the platform can be used to detect platform edges based on a computed location of the reference line pattern in the image.
    Type: Application
    Filed: May 17, 2019
    Publication date: January 16, 2020
    Inventors: Anindya Sarkar, Chibuya Siame
  • Publication number: 20200020109
    Abstract: The present disclosure describes a method of foreground segmentation and nucleus ranking for scoring dual ISH images. The method has been developed to better identify those nuclei, within a selected field of view, that meet the criteria for dual ISH scoring.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 16, 2020
    Inventors: Anindya Sarkar, Jim Martin
  • Patent number: 10521644
    Abstract: A computer-based specimen analyzer (10) is configured to detect a level of expression of genes in a cell sample by detecting dots that represent differently stained genes and chromosomes in a cell. The color of the stained genes and the chromosomes is enhanced and filtered to produce a dot mask that defines areas in the image that are genes, chromosomes, or non-genetic material. Metrics are determined for the dots and/or pixels in the image of the cell in areas corresponding to the dots. The metrics are fed to a classifier that separates genes from chromosomes. The results of the classifier are counted to estimate the expression level of genes in the tissue samples.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: December 31, 2019
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Pascal Bamford, Srinivas Chukka, Jim F. Martin, Anindya Sarkar, Olcay Sertel, Ellen Suzue, Harshal Varangaonkar
  • Patent number: 10503868
    Abstract: The disclosure relates to devices, systems and methods for image registration and annotation. The devices include computer software products for aligning whole slide digital images on a common grid and transferring annotations from one aligned image to another aligned image on the basis of matching tissue structure. The systems include computer-implemented systems such as work stations and networked computers for accomplishing the tissue-structure based image registration and cross-image annotation. The methods include processes for aligning digital images corresponding to adjacent tissue sections on a common grid based on tissue structure, and transferring annotations from one of the adjacent tissue images to another of the adjacent tissue images.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 10, 2019
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Srinivas Chukka, Anindya Sarkar, Quan Yuan
  • Patent number: 10475190
    Abstract: The present disclosure describes a method of foreground segmentation and nucleus ranking for scoring dual ISH images. The method has been developed to better identify those nuclei, within a selected field of view, that meet the criteria for dual ISH scoring.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: November 12, 2019
    Assignee: VENTANA MEDICAL SYSTEMS, INC.
    Inventors: Anindya Sarkar, Jim Martin
  • Patent number: 10395371
    Abstract: The present invention relates to systems and methods for adaptively optimizing broadband reference spectra for a multi-spectral image or adaptively optimizing reference colors for a bright-field image. The methods and systems of the present invention involve optimization techniques that are based on structures detected in an unmixed channel of the image, and involves detecting and segmenting structures from a channel, updating a reference matrix with signals estimated from the structures, subsequently unmixing the image using the updated reference matrix, and iteratively repeating the process until an optimized reference matrix is achieved.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: August 27, 2019
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Ting Chen, Srinivas Chukka, Anindya Sarkar
  • Publication number: 20190236780
    Abstract: A digital pathology system and associated method and computer program product provide a quantitative analysis of entire tissue slides as well as intuitive, effective, fast, and precise quantification of biomarker expressions across relevant areas of the entire tissue slides. The digital pathology system enables a novel workflow that allows the user to efficiently outline clinically relevant morphology in its entirety, including solid tumor areas. Quantitative analysis results are then efficiently and intuitively provided to the user for all tissue content (i.e., millions of cells) within seconds. This efficiency is made possible by a pre-computation step that computes and stores image analysis results for later retrieval. Visualizing vast amount of data effectively is another component of the system that provides information and confidence to the user about the biomarker expression levels.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Michael Barnes, Joerg Bredno, Srinivas Chukka, Christoph Guetter, Auranuch Lorsakul, Anindya Sarkar, Ellen Suzue
  • Publication number: 20190220981
    Abstract: The present invention relates to systems and methods for adaptively optimizing broadband reference spectra for a multi-spectral image or adaptively optimizing reference colors for a bright-field image. The methods and systems of the present invention involve optimization techniques that are based on structures detected in an unmixed channel of the image, and involves detecting and segmenting structures from a channel, updating a reference matrix with signals estimated from the structures, subsequently unmixing the image using the updated reference matrix, and iteratively repeating the process until an optimized reference matrix is achieved.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Inventors: Ting Chen, Srinivas Chukka, Anindya Sarkar
  • Publication number: 20190156103
    Abstract: The present disclosures relates to a method of detecting, classifying, and counting dots in an image of a tissue specimen comprising detecting dots in an image of the tissue sample that meet criteria for absorbance strength, black unmixed image channel strength, red unmixed image channel strength, and a difference of Gaussian threshold, wherein the detected dots correspond to in situ hybridization signals in the tissue samples; classifying the detected dots as belonging to a black in situ hybridization signal or to a red in situ hybridization signal; and calculating a ratio of those dots belonging to the black in situ hybridization signal and those belonging to the red in situ hybridization signal.
    Type: Application
    Filed: January 26, 2019
    Publication date: May 23, 2019
    Inventors: Anindya Sarkar, Jim Martin
  • Publication number: 20190129157
    Abstract: Techniques for acquiring focused images of a microscope slide are disclosed. During a calibration phase, a “base” focal plane is determined using non-synthetic and/or synthetic auto-focus techniques. Furthermore, offset planes are determined for color channels (or filter bands) and used to generate an auto-focus model. During subsequent scans, the auto-focus model can be used to quickly estimate the focal plane of interest for each color channel (or filter band) rather than re-employing the non-synthetic and/or synthetic auto-focus techniques.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 2, 2019
    Inventors: Joerg Bredno, Jim F. Martin, Anindya Sarkar
  • Publication number: 20190130607
    Abstract: The present disclosure is directed to a computer system designed to (i) receive a series of images as input; (ii) compute a number of metrics derived from focus features and color separation features within the images; and (iii) evaluate the metrics to return (a) an identification of the most suitable z-layer in a z-stack, given a series of z-layer images in a z-stack; and/or (b) an identification of those image tiles that are more suitable for cellular based scoring by a medical professional, given a series of image tiles from an area of interest of a whole slide scan.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 2, 2019
    Inventors: Jeffrey Atchison, Jim Martin, Anindya Sarkar
  • Patent number: 10235559
    Abstract: The present disclosures relates to a method of detecting, classifying, and counting dots in an image of a tissue specimen comprising detecting dots in an image of the tissue sample that meet criteria for absorbance strength, black unmixed image channel strength, red unmixed image channel strength, and a difference of Gaussian threshold, wherein the detected dots correspond to in situ hybridization signals in the tissue samples; classifying the detected dots as belonging to a black in situ hybridization signal or to a red in situ hybridization signal; and calculating a ratio of those dots belonging to the black in situ hybridization signal and those belonging to the red in situ hybridization signal.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: March 19, 2019
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Anindya Sarkar, Jim Martin
  • Publication number: 20190026895
    Abstract: Systems and methods for automatically excluding artifacts from an analysis of a biological specimen image are disclosed. An exemplary method includes obtaining an immunohistochemistry (IHC) image and a control image, determining whether the control image includes one or more artifacts, upon a determination that the control image includes one or more artifacts, identifying one or more artifact regions within the IHC image by mapping the one or more artifacts from the control image to the IHC image, and performing image analysis of the IHC image where any identified artifact regions are excluded from the image analysis.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 24, 2019
    Inventor: Anindya Sarkar
  • Patent number: 10181180
    Abstract: The present disclosure is directed to a computer system designed to (i) receive a series of images as input; (ii) compute a number of metrics derived from focus features and color separation features within the images; and (iii) evaluate the metrics to return (a) an identification of the most suitable z-layer in a z-stack, given a series of z-layer images in a z-stack; and/or (b) an identification of those image tiles that are more suitable for cellular based scoring by a medical professional, given a series of image tiles from an area of interest of a whole slide scan.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: January 15, 2019
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Anindya Sarkar, Jim Martin, Jeffrey Atchison
  • Patent number: 10176579
    Abstract: A facility includes systems and methods for providing a learning-based image analysis approach for the automated detection, classification, and counting of objects (e.g., cell nuclei) within digitized pathology tissue slides. The facility trains an object classifier using a plurality of reference sample slides. Subsequently, and in response to receiving a scanned image of a slide containing tissue data, the facility separates the whole slide into a background region and a tissue region using image segmentation techniques. The facility identifies dominant color regions within the tissue data and identifies seed points within those regions using, for example, a radial symmetry based approach. Based at least in part on those seed points, the facility generates a tessellation, each distinct area in the tessellation corresponding to a distinct detected object. These objects are then classified using the previously-trained classifier. The facility uses the classified objects to score slides.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: January 8, 2019
    Assignee: VENTANA MEDICAL SYSTEMS, INC.
    Inventors: Srinivas Chukka, Sujit Siddheshwar Chivate, Suhas Hanmantrao Patil, Bikash Sabata, Olcay Sertel, Anindya Sarkar