Patents by Inventor Anindya Sarkar

Anindya Sarkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180292638
    Abstract: A method and associated method and computer program product for acquiring focused images of a specimen on a slide, by determining optimal scanning trajectories. The method includes capturing a relatively low magnification image of the slide to locate the specimen, forming a grid that includes an arrangement of grid points, overlaying at least part of the grid over a field of view that covers at least part of the specimen, capturing a relatively high magnification Z-stack of images of the specimen within the field of view, determining a best focus for each grid point within said at least part of the grid to form a resulting grid of three dimensional points, and based on the resulting grid, determining one or more three dimensional scanning trajectories.
    Type: Application
    Filed: June 15, 2018
    Publication date: October 11, 2018
    Inventors: Joerg Bredno, Jim F. Martin, Anindya Sarkar
  • Publication number: 20180286043
    Abstract: Methods and systems for generating a heat map that reduces bias in selecting FOVs are disclosed. Some disclosed methods include annotating a primary stained image, registering the annotation to a secondary serial specific stained image, using an image analysis algorithm to compute a scoring criteria specific to the tissue and assay type for tiled regions in the image, using a sliding window in the annotated tumor region to compute values for each pixel in a heat map which correlate to the specific scoring criteria, displaying the heat map at low resolution, ranking and selecting hot spots, selecting FOVs from the hot spot regions which results in displaying the slide-level score for the FOVs. The systems comprise, among other things, software configured to perform the referenced method.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Michael Barnes, Joerg Bredno, Christoph Chefd'hotel, Srinivas Chukka, Kien Nguyen, Anindya Sarkar
  • Patent number: 10080042
    Abstract: User engagement in unwatched videos is predicted by collecting and aggregating data describing user engagement with watched videos. The data are normalized to reduce the influence of factors other than the content of the videos on user engagement. Engagement metrics are calculated for segments of watched videos that indicate user engagement with each segment relative to overall user engagement with the watched videos. Features of the watched videos within time windows are characterized, and a function is learned that relates the features of the videos within the time windows to the engagement metrics for the time windows. The features of a time window of an unwatched video are characterized, and the learned function is applied to the features to predict user engagement to the time window of the unwatched video. The unwatched video can be enhanced based on the predicted user engagement.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: September 18, 2018
    Assignee: GOOGLE LLC
    Inventors: Ullas Gargi, Jay N. Yagnik, Anindya Sarkar
  • Publication number: 20180012355
    Abstract: The subject disclosure provides systems and methods for determination of Area of Interest (AOI) for different types of input slides. Slide thumbnails may be assigned into one of five different types, and separate algorithms for AOI detection executed depending on the slide type. Slide types include ThinPrep (RTM) slides, tissue micro-array (TMA) slides, control HER2 slides with 4 cores, smear slides, and a generic slide. The slide type may be assigned based on a user input. Customized AOI detection operations are provided for each slide type. If the user enters an incorrect slide type, operations include detecting the incorrect input and executing the appropriate method. The result of each AOI detection operations provides as its output a soft-weighted image having zero intensity values at pixels that are detected as not belonging to tissue, and higher intensity values assigned to pixels detected as likely belonging to tissue regions.
    Type: Application
    Filed: July 26, 2017
    Publication date: January 11, 2018
    Inventors: Anindya Sarkar, Jim Martin
  • Publication number: 20170337695
    Abstract: The present disclosure describes a method of foreground segmentation and nucleus ranking for scoring dual ISH images. The method has been developed to better identify those nuclei, within a selected field of view, that meet the criteria for dual ISH scoring.
    Type: Application
    Filed: July 25, 2017
    Publication date: November 23, 2017
    Inventors: Anindya Sarkar, Jim Martin
  • Patent number: 9818190
    Abstract: The disclosure relates to devices, systems and methods for image registration and annotation. The devices include computer software products for aligning whole slide digital images on a common grid and transferring annotations from one aligned image to another aligned image on the basis of matching tissue structure. The systems include computer-implemented systems such as work stations and networked computers for accomplishing the tissue-structure based image registration and cross-image annotation. The methods include processes for aligning digital images corresponding to adjacent tissue sections on a common grid based on tissue structure, and transferring annotations from one of the adjacent tissue images to another of the adjacent tissue images.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 14, 2017
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Srinivas Chukka, Anindya Sarkar, Bikash Sabata, Quan Yuan
  • Publication number: 20170323148
    Abstract: The present disclosures relates to a method of detecting, classifying, and counting dots in an image of a tissue specimen comprising detecting dots in an image of the tissue sample that meet criteria for absorbance strength, black unmixed image channel strength, red unmixed image channel strength, and a difference of Gaussian threshold, wherein the detected dots correspond to in situ hybridization signals in the tissue samples; classifying the detected dots as belonging to a black in situ hybridization signal or to a red in situ hybridization signal; and calculating a ratio of those dots belonging to the black in situ hybridization signal and those belonging to the red in situ hybridization signal.
    Type: Application
    Filed: July 25, 2017
    Publication date: November 9, 2017
    Inventors: Anindya Sarkar, Jim Martin
  • Publication number: 20170323431
    Abstract: The present disclosure is directed to a computer system designed to (i) receive a series of images as input; (ii) compute a number of metrics derived from focus features and color separation features within the images; and (iii) evaluate the metrics to return (a) an identification of the most suitable z-layer in a z-stack, given a series of z-layer images in a z-stack; and/or (b) an identification of those image tiles that are more suitable for cellular based scoring by a medical professional, given a series of image tiles from an area of interest of a whole slide scan.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Anindya Sarkar, Jim Martin, Jeffrey Atchison
  • Patent number: 9792693
    Abstract: Processing of images acquired via fluorescence microscopy by identifying broadband and other undesired signals from the component signals of a scanned image, and processing selected regions of the image that are known to contain signals of interest, thereby extracting or identifying desired signals while subtracting undesired signals. One or more broadband signals are recognized by their unique signature and ubiquitous dispersion through the image. Regions of the scanned image may be tagged as consisting of predominantly broadband signals and are ignored during a spectral unmixing process. The remaining regions of the image, or selected regions of the image known to contain desired signals, may be unmixed, and the plurality of reference spectra subtracted from the components to extract or identify the target signals. The set of target signals may be refined by eliminating known or obvious sources of noise by, for instance, being compared to known or ideal sets of signals from similar materials.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 17, 2017
    Assignee: VENTANA MEDICAL SYSTEMS, INC.
    Inventors: Pascal Bamford, Srinivas Chukka, Lou Dietz, Ronald T. Kurnik, Bikash Sabata, Anindya Sarkar, Olcay Sertel
  • Patent number: 9681158
    Abstract: User engagement in unwatched videos is predicted by collecting and aggregating data describing user engagement with watched videos. The data are normalized to reduce the influence of factors other than the content of the videos on user engagement. Engagement metrics are calculated for segments of watched videos that indicate user engagement with each segment relative to overall user engagement with the watched videos. Features of the watched videos within time windows are characterized, and a function is learned that relates the features of the videos within the time windows to the engagement metrics for the time windows. The features of a time window of an unwatched video are characterized, and the learned function is applied to the features to predict user engagement to the time window of the unwatched video. The unwatched video can be enhanced based on the predicted user engagement.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: June 13, 2017
    Assignee: Google Inc.
    Inventors: Ullas Gargi, Jay N. Yagnik, Anindya Sarkar
  • Publication number: 20160370565
    Abstract: Techniques for acquiring focused images of a microscope slide are disclosed. During a calibration phase, a “base” focal plane is determined using non-synthetic and/or synthetic auto-focus techniques. Furthermore, offset planes are determined for color channels (or filter bands) and used to generate an auto-focus model. During subsequent scans, the auto-focus model can be used to quickly estimate the focal plane of interest for each color channel (or filter band) rather than re-employing the non-synthetic and/or synthetic auto-focus techniques.
    Type: Application
    Filed: July 15, 2014
    Publication date: December 22, 2016
    Applicant: VENTANA MEDICAL SYSTEMS, INC.
    Inventors: Joerg Bredno, Jim F. Martin, Anindya Sarkar
  • Publication number: 20160321495
    Abstract: The subject disclosure presents systems and methods for receiving a plurality of assay information along with a query for one or more features of interest, and projecting anatomical information from an anatomical assay onto a staining assay, for example an immunohistochemical (IHC) assay that is commonly registered with the anatomical assay, to locate or determine features appropriate for analysis. The anatomical information may be used to generate a mask that is projected on one or more commonly registered staining assays. A location of the feature of interest in the staining assay may be correlated with the anatomical context provided by the mask, with any features of interest that match the anatomical mask being selected or indicated as appropriate for analysis.
    Type: Application
    Filed: April 1, 2016
    Publication date: November 3, 2016
    Applicant: Ventana Medical Systems, Inc.
    Inventors: Srinivas Chukka, Anindya Sarkar, Joerg Bredno
  • Publication number: 20160321809
    Abstract: The disclosure relates to devices, systems and methods for image registration and annotation. The devices include computer software products for aligning whole slide digital images on a common grid and transferring annotations from one aligned image to another aligned image on the basis of matching tissue structure. The systems include computer-implemented systems such as work stations and networked computers for accomplishing the tissue-structure based image registration and cross-image annotation. The methods include processes for aligning digital images corresponding to adjacent tissue sections on a common grid based on tissue structure, and transferring annotations from one of the adjacent tissue images to another of the adjacent tissue images.
    Type: Application
    Filed: March 31, 2016
    Publication date: November 3, 2016
    Applicant: Ventana Medical Systems, Inc.
    Inventors: Srinivas Chukka, Anindya Sarkar, Quan Yuan
  • Publication number: 20160253817
    Abstract: The present invention relates to systems and methods for adaptively optimizing broadband reference spectra for a multi-spectral image or adaptively optimizing reference colors for a bright-field image. The methods and systems of the present invention involve optimization techniques that are based on structures detected in an unmixed channel of the image, and involves detecting and segmenting structures from a channel, updating a reference matrix with signals estimated from the structures, subsequently unmixing the image using the updated reference matrix, and iteratively repeating the process until an optimized reference matrix is achieved.
    Type: Application
    Filed: March 29, 2016
    Publication date: September 1, 2016
    Applicant: Ventana Medical Systems, Inc.
    Inventors: Ting Chen, Srinivas Chukka, Anindya Sarkar
  • Publication number: 20160042511
    Abstract: A facility includes systems and methods for providing a learning-based image analysis approach for the automated detection, classification, and counting of objects (e.g., cell nuclei) within digitized pathology tissue slides. The facility trains an object classifier using a plurality of reference sample slides. Subsequently, and in response to receiving a scanned image of a slide containing tissue data, the facility separates the whole slide into a background region and a tissue region using image segmentation techniques. The facility identifies dominant color regions within the tissue data and identifies seed points within those regions using, for example, a radial symmetry based approach. Based at least in part on those seed points, the facility generates a tessellation, each distinct area in the tessellation corresponding to a distinct detected object. These objects are then classified using the previously-trained classifier. The facility uses the classified objects to score slides.
    Type: Application
    Filed: March 12, 2014
    Publication date: February 11, 2016
    Inventors: Srinivas Chukka, Sujit Siddheshwar Chivate, Suhas Hanmantrao Patil, Bikash Sabata, Olcay Sertel, Anindya Sarkar
  • Publication number: 20160035100
    Abstract: Processing of images acquired via fluorescence microscopy by identifying broadband and other undesired signals from the component signals of a scanned image, and processing selected regions of the image that are known to contain signals of interest, thereby extracting or identifying desired signals while subtracting undesired signals. One or more broadband signals are recognized by their unique signature and ubiquitous dispersion through the image. Regions of the scanned image may be tagged as consisting of predominantly broadband signals and are ignored during a spectral unmixing process. The remaining regions of the image, or selected regions of the image known to contain desired signals, may be unmixed, and the plurality of reference spectra subtracted from the components to extract or identify the target signals. The set of target signals may be refined by eliminating known or obvious sources of noise by, for instance, being compared to known or ideal sets of signals from similar materials.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 4, 2016
    Inventors: Pascal BAMFORD, Srinivas CHUKKA, Lou DIETZ, Ronald T. KURNIK, Bikash SABATA, Anindya SARKAR, Olcay SERTEL
  • Publication number: 20160019695
    Abstract: The disclosure relates to devices, systems and methods for image registration and annotation. The devices include computer software products for aligning whole slide digital images on a common grid and transferring annotations from one aligned image to another aligned image on the basis of matching tissue structure. The systems include computer-implemented systems such as work stations and networked computers for accomplishing the tissue-structure based image registration and cross-image annotation. The methods include processes for aligning digital images corresponding to adjacent tissue sections on a common grid based on tissue structure, and transferring annotations from one of the adjacent tissue images to another of the adjacent tissue images.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 21, 2016
    Inventors: Srinivas Chukka, Anindya Sarkar, Bikash Sabata, Quan Yuan
  • Publication number: 20150347702
    Abstract: Heterogeneity for biomarkers in a tissue sample can be calculated. A heterogeneity score can be combined with an immunohistochemistry combination score to provide breast cancer recurrence prognosis. Heterogeneity can be based on percent positivity determinations for a plurality of biomarkers according to how many cells in the sample stain positive. An immunohistochemistry combination score can be calculated. An imaging tool can support a digital pathologist workflow that includes designating fields of view in an image of the tissue sample. Based on the fields of view, a heterogeneity metric can be calculated and combined with an immunohistochemistry combination score to generate a breast cancer recurrence prognosis score.
    Type: Application
    Filed: December 19, 2013
    Publication date: December 3, 2015
    Inventors: Srinivas Chukka, Olcay Sertel, Anindya Sarkar, Nikolaus Wick, Shalini Singh, Crystal Schemp, Paul Waring, Raymond Tubbs
  • Patent number: 8959540
    Abstract: User engagement in unwatched videos is predicted by collecting and aggregating data describing user engagement with watched videos. The data are normalized to reduce the influence of factors other than the content of the videos on user engagement. Engagement metrics are calculated for segments of watched videos that indicate user engagement with each segment relative to overall user engagement with the watched videos. Features of the watched videos within time windows are characterized, and a function is learned that relates the features of the videos within the time windows to the engagement metrics for the time windows. The features of a time window of an unwatched video are characterized, and the learned function is applied to the features to predict user engagement to the time window of the unwatched video. The unwatched video can be enhanced based on the predicted user engagement.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: February 17, 2015
    Assignee: Google Inc.
    Inventors: Ullas Gargi, Jay Yagnik, Anindya Sarkar
  • Publication number: 20140377753
    Abstract: A computer-based specimen analyzer (10) is configured to detect a level of expression of genes in a cell sample by detecting dots that represent differently stained genes and chromosomes in a cell. The color of the stained genes and the chromosomes is enhanced and filtered to produce a dot mask that defines areas in the image that are genes, chromosomes, or non-genetic material. Metrics are determined for the dots and/or pixels in the image of the cell in areas corresponding to the dots. The metrics are fed to a classifier that separates genes from chromosomes. The results of the classifier are counted to estimate the expression level of genes in the tissue samples.
    Type: Application
    Filed: January 29, 2013
    Publication date: December 25, 2014
    Applicant: Ventana Medical Systems, Inc.
    Inventors: Pascal Bamford, Srinivas Chukka, Jim F. Martin, Anindya Sarkar, Olcay Sertel, Ellen Suzue, Harshal Varangaonkar