Patents by Inventor Anna-Katrina Shedletsky

Anna-Katrina Shedletsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10871830
    Abstract: Disclosed herein is an electronic device having a proximity sensor for determining whether an object, such as a user's finger, is in proximity to or in contact with an input mechanism of the electronic device.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: December 22, 2020
    Assignee: Apple Inc.
    Inventors: Colin M. Ely, Fletcher R. Rothkopf, Baboo V. Gowreesunker, Prashanth S. Holenarsipur, Serhan O. Isikman, Anna-Katrina Shedletsky
  • Publication number: 20200364851
    Abstract: One variation of an optical inspection kit includes: an enclosure defining an imaging volume; an optical sensor adjacent the imaging volume and defining a field of view directed toward the imaging volume; a nest module defining a receptacle configured to locate a surface of interest on a first unit of a first part within the imaging volume at an image plane of the optical sensor; a dark-field lighting module adjacent and perpendicular to the nest module and including a dark-field light source configured to output light across a light plane and a directional light filter configured to pass light output by the dark-field light source normal to the light plane and to reject light output by the dark-field light source substantially nonparallel to the light plane; and a bright-field light source proximal the optical sensor and configured to output light toward the surface of interest.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky
  • Publication number: 20200334802
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a first set of inspection images of a first set of assembly units recorded by an optical inspection station over a first period of time; generating a first set of vectors representing features extracted from the first set of inspection images; grouping neighboring vectors in a multi-dimensional feature space into a set of vector groups; accessing a second inspection image of a second assembly recorded by the optical inspection station at a second time succeeding the first period of time; detecting a second set of features in the second inspection image; generating a second vector representing the second set of features in the multi-dimensional feature space; and, in response to the second vector deviating from the set of vector groups by more than a threshold difference, flagging the second assembly unit.
    Type: Application
    Filed: June 9, 2020
    Publication date: October 22, 2020
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Patent number: 10789701
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a set of inspection images of a set of assembly units recorded by an optical inspection station; for each inspection image in the set of inspection images, detecting a set of features in the inspection image and generating a vector representing the set of features in a multi-dimensional feature space; grouping neighboring vectors in the multi-dimensional feature space into a set of vector groups; and, in response to receipt of a first inspection result indicting a defect in a first assembly unit, in the set of assembly units, associated with a first vector in a first vector group, in the set of vector groups, labeling the first vector group with the defect and flagging a second assembly unit associated with a second vector, in the first vector group, as exhibiting characteristics of the defect.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 29, 2020
    Assignee: Instrumental, Inc.
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Patent number: 10783624
    Abstract: One variation of an optical inspection kit includes: an enclosure defining an imaging volume; an optical sensor adjacent the imaging volume and defining a field of view directed toward the imaging volume; a nest module defining a receptacle configured to locate a surface of interest on a first unit of a first part within the imaging volume at an image plane of the optical sensor; a dark-field lighting module adjacent and perpendicular to the nest module and including a dark-field light source configured to output light across a light plane and a directional light filter configured to pass light output by the dark-field light source normal to the light plane and to reject light output by the dark-field light source substantially nonparallel to the light plane; and a bright-field light source proximal the optical sensor and configured to output light toward the surface of interest.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: September 22, 2020
    Assignee: Instrumental, Inc.
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky
  • Publication number: 20200272240
    Abstract: This relates to a device that detects a user's motion and gesture input through the movement of one or more of the user's hand, arm, wrist, and fingers, for example, to provide commands to the device or to other devices. The device can include a plurality of myoelectric sensors configured to detect one or more electrical signals from a body part of a user indicative of one or more movements. A plurality of signals indicative of the detected one or more electrical signals may be generated. The device may also include a wireless communication transmitter configured to communicate with a peripheral device and a processor. The processor may be configured to receive the plurality of signals from the plurality of myoelectric sensors, use the plurality of signals together to determine a gesture, and communicate one or more of: the plurality of signals and the gesture to the peripheral device.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Inventors: Andrzej Baranski, Anna-Katrina Shedletsky, Kuldeep P. Lonkar, Serhan Isikman, Stephen Brian Lynch, Colin M. Ely, Christopher Werner, Erik De Jong, Samuel B. Weiss
  • Publication number: 20200233529
    Abstract: Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
    Type: Application
    Filed: April 4, 2020
    Publication date: July 23, 2020
    Inventors: Anna-Katrina Shedletsky, Christopher M. Werner, Colin M. Ely, Samuel Weiss
  • Patent number: 10713776
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a first set of inspection images of a first set of assembly units recorded by an optical inspection station over a first period of time; generating a first set of vectors representing features extracted from the first set of inspection images; grouping neighboring vectors in a multi-dimensional feature space into a set of vector groups; accessing a second inspection image of a second assembly recorded by the optical inspection station at a second time succeeding the first period of time; detecting a second set of features in the second inspection image; generating a second vector representing the second set of features in the multi-dimensional feature space; and, in response to the second vector deviating from the set of vector groups by more than a threshold difference, flagging the second assembly unit.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 14, 2020
    Assignee: Instrumental, Inc.
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Patent number: 10671176
    Abstract: This relates to a device that detects a user's motion and gesture input through the movement of one or more of the user's hand, arm, wrist, and fingers, for example, to provide commands to the device or to other devices. The device can include a plurality of myoelectric sensors configured to detect one or more electrical signals from a body part of a user indicative of one or more movements. A plurality of signals indicative of the detected one or more electrical signals may be generated. The device may also include a wireless communication transmitter configured to communicate with a peripheral device and a processor. The processor may be configured to receive the plurality of signals from the plurality of myoelectric sensors, use the plurality of signals together to determine a gesture, and communicate one or more of: the plurality of signals and the gesture to the peripheral device.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: June 2, 2020
    Assignee: Apple Inc.
    Inventors: Andrzej Baranski, Anna-Katrina Shedletsky, Kuldeep P. Lonkar, Serhan Isikman, Stephen Brian Lynch, Colin M. Ely, Christopher Werner, Erik De Jong, Samuel B. Weiss
  • Publication number: 20200167006
    Abstract: Disclosed herein is an electronic device having a proximity sensor for determining whether an object, such as a user's finger, is in proximity to or in contact with an input mechanism of the electronic device.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 28, 2020
    Inventors: Colin M. Ely, Fletcher R. Rothkopf, Baboo V. Gowreesunker, Prashanth S. Holenarsipur, Serhan O. Isikman, Anna-Katrina Shedletsky
  • Patent number: 10613685
    Abstract: Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: April 7, 2020
    Assignee: APPLE INC.
    Inventors: Anna-Katrina Shedletsky, Christopher M. Werner, Colin M. Ely, Samuel Weiss
  • Patent number: 10575156
    Abstract: A wireless device configured to selectively enable and disable functionality when another wireless device that is paired to it is set to enable and disable functionality is provided. The wireless device can mirror the settings of a paired device such that when the paired device is set to airplane mode, the wireless device can automatically be set to airplane. Furthermore, when the airplane mode is disabled in the paired device, the wireless device can automatically disable its own airplane mode.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 25, 2020
    Inventors: Anna-Katrina Shedletsky, Fletcher R. Rothkopf, Jaseem Aliyar, Samuel Bruce Weiss
  • Publication number: 20200044197
    Abstract: An electronic device is provided with a display and a light sensor that receives light that passes through the display. The display includes features that increase the amount of light that passes through the display. The features may be translucency enhancement features that allow light to pass directly through the display onto a light sensor mounted behind the display or may include a light-guiding layer that guides light through the display onto a light sensor mounted along an edge of the display. The translucency enhancement features may be formed in a reflector layer or an electrode layer for the display. The translucency enhancement features may include microperforations in a reflector layer of the display, a light-filtering reflector layer of the display, or a reflector layer of the display that passes a portion of the light and reflects an additional portion of the light.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Inventors: Anna-Katrina Shedletsky, Paul S. Drzaic, Erik G. de Jong, Fletcher R. Rothkopf
  • Publication number: 20200013156
    Abstract: One variation of a method for monitoring manufacture of assembly units includes: receiving selection of a target location hypothesized by a user to contain an origin of a defect in assembly units of an assembly type; accessing a feature map linking non-visual manufacturing features to physical locations within the assembly type; for each assembly unit, accessing an inspection image of the assembly unit recorded by an optical inspection station during production of the assembly unit, projecting the target location onto the inspection image, detecting visual features proximal the target location within the inspection image, and aggregating non-visual manufacturing features associated with locations proximal the target location and representing manufacturing inputs into the assembly unit based on the feature map; and calculating correlations between visual and non-visual manufacturing features associated with locations proximal the target location and the defect for the set of assembly units.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 9, 2020
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Tilmann Bruckhaus, Shilpi Kumar, Isaac Sukin, Ian Theilacker, Brendan Green
  • Patent number: 10503271
    Abstract: Disclosed herein is an electronic device having a proximity sensor for determining whether an object, such as a user's finger, is in proximity to or in contact with an input mechanism of the electronic device.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 10, 2019
    Assignee: Apple Inc.
    Inventors: Colin M. Ely, Fletcher R. Rothkopf, Baboo V. Gowreesunker, Prashanth S. Holenarsipur, Serhan O. Isikman, Anna-Katrina Shedletsky
  • Patent number: 10488936
    Abstract: This relates to a device that detects a user's motion and gesture input through the movement of one or more of the user's hand, arm, wrist, and fingers, for example, to provide commands to the device or to other devices. The device can be attached to, resting on, or touching the user's wrist, ankle or other body part. One or more optical sensors, inertial sensors, mechanical contact sensors, and myoelectric sensors can detect movements of the user's body. Based on the detected movements, a user gesture can be determined. The device can interpret the gesture as an input command, and the device can perform an operation based on the input command. By detecting movements of the user's body and associating the movements with input commands, the device can receive user input commands through another means in addition to, or instead of, voice and touch input, for example.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: November 26, 2019
    Assignee: Apple Inc.
    Inventors: Andrzej Baranski, Anna-Katrina Shedletsky, Kuldeep P. Lonkar, Serhan Isikman, Stephen Brian Lynch, Colin M. Ely, Christopher Werner, Erik De Jong, Samuel B. Weiss
  • Patent number: 10446800
    Abstract: An electronic device is provided with a display and a light sensor that receives light that passes through the display. The display includes features that increase the amount of light that passes through the display. The features may be translucency enhancement features that allow light to pass directly through the display onto a light sensor mounted behind the display or may include a light-guiding layer that guides light through the display onto a light sensor mounted along an edge of the display. The translucency enhancement features may be formed in a reflector layer or an electrode layer for the display. The translucency enhancement features may include microperforations in a reflector layer of the display, a light-filtering reflector layer of the display, or a reflector layer of the display that passes a portion of the light and reflects an additional portion of the light.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: October 15, 2019
    Assignee: Apple Inc.
    Inventors: Anna-Katrina Shedletsky, Paul S. Drzaic, Erik G. de Jong, Fletcher R. Rothkopf
  • Publication number: 20190278232
    Abstract: One embodiment of the present disclosure is directed to a wearable electronic device. The wearable electronic device includes an enclosure having a sidewall with a button aperture defined therethrough, a display connected to the enclosure, and a processing element in communication with the display. The device also includes a sensing element in communication with the processing element and an input button at least partially received within the button aperture and in communication with the sensing element, the input button configured to receive two types of user inputs. During operation, the sensing element tracks movement of the input button to determine the two types of user inputs.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 12, 2019
    Inventors: Colin M. Ely, Fletcher Rothkopf, Christopher Matthew Werner, John B. Morrell, Camille Moussette, Duncan Kerr, Anna-Katrina Shedletsky
  • Patent number: D874458
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: February 4, 2020
    Assignee: Apple Inc.
    Inventors: Jody Akana, Bartley K. Andre, Shota Aoyagi, Anthony Michael Ashcroft, Jeremy Bataillou, Brad G. Boozer, Makiko Kawamura Brzezinski, Tyler Scott Bushnell, Daniel J. Coster, Daniele De Iuliis, Colin Ely, M. Evans Hankey, Phillip M. Hobson, Julian Hoenig, Richard P. Howarth, Jonathan P. Ive, Eric Steven Jol, Benjamin Jordan Kallman, Duncan Robert Kerr, David Nazzaro, Trevor Jordan Ness, Marc A. Newson, David Pelletier, Matthew Dean Rohrbach, Fletcher Rothkopf, Peter Russell-Clarke, Jason Christopher Sauers, Benjamin Andrew Shaffer, Anna-Katrina Shedletsky, Mikael Silvanto, Christopher J. Stringer, Samuel Bruce Weiss, Christopher M. Werner, Eugene Antony Whang, Michael Benjamin Wittenberg, Stephen Paul Zadesky, Rico Zörkendörfer
  • Patent number: D900813
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: November 3, 2020
    Assignee: Apple Inc.
    Inventors: Jody Akana, Bartley K. Andre, Shota Aoyagi, Anthony Michael Ashcroft, Jeremy Bataillou, Daniel J. Coster, Daniele De Iuliis, Erik Geddes Pieter De Jong, M. Evans Hankey, Julian Hoenig, Richard P. Howarth, Jonathan P. Ive, Peter Jon Kardassakis, Duncan Robert Kerr, Marc A. Newson, Matthew Dean Rohrbach, Fletcher Rothkopf, Peter Russell-Clarke, Benjamin Andrew Shaffer, Anna-Katrina Shedletsky, Mikael Silvanto, Christopher J. Stringer, Katherine E. Tong, Samuel Bruce Weiss, Eugene Antony Whang, Rico Zörkendörfer