Patents by Inventor Anping Liu

Anping Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079038
    Abstract: The disclosed driver and memory include: a phase driver that receives a first voltage signal, configured to output a second phase signal according to the first phase signal and the first voltage signal; a complementary phase driver includes: a first inverter for generating a complementary inverted phase signal based on a first complementary phase signal, the first phase signal and the first complementary phase signal are mutually inverted; a second inverter for receiving an output signal of the first inverter and a second voltage signal, the voltage value of the second voltage signal is smaller than that of the first voltage signal, and the second inverter is configured to be based on the first complementary inverted phase signal, and the second voltage signal outputs a second complementary phase signal. The driver of the embodiment provides the second phase signal and the second complementary phase signal.
    Type: Application
    Filed: March 7, 2023
    Publication date: March 7, 2024
    Inventors: Zhonglai Liu, Xianjun Wu, Anping Qiu
  • Publication number: 20230331436
    Abstract: A glass container including a body having a delamination factor less than or equal to 10 and at least one marking is described. The body has an inner surface, an outer surface, and a wall thickness extending between the outer surface and the inner surface. The marking is located within the wall thickness. In particular, the marking is a portion of the body having a refractive index that differs from a refractive index of an unmarked portion of the body. Methods of forming the marking within the body are also described.
    Type: Application
    Filed: May 4, 2023
    Publication date: October 19, 2023
    Inventors: Steven Edward DeMartino, Daniel Warren Hawtof, Ming-Jun Li, Anping Liu, John Stephen Peanasky, Christopher Lee Timmons, Qi Wu
  • Patent number: 11667434
    Abstract: A glass container including a body having a delamination factor less than or equal to 10 and at least one marking is described. The body has an inner surface, an outer surface, and a wall thickness extending between the outer surface and the inner surface. The marking is located within the wall thickness. In particular, the marking is a portion of the body having a refractive index that differs from a refractive index of an unmarked portion of the body. Methods of forming the marking within the body are also described.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: June 6, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Daniel Warren Hawtof, Ming-Jun Li, Anping Liu, John Stephen Peanasky, Christopher Lee Timmons, Qi Wu
  • Publication number: 20220347796
    Abstract: The systems and methods disclosed herein utilize a beam-forming system configured to convert a Gaussian laser beam into an annular vortex laser beam having a relatively large depth of focus, which enables the processing of thick or stacked glass-based objects annular laser beam is defined in part by a topological charge m that defines an amount of rotation of the annular vortex beam around its central axis as it propagates annular vortex beam is used to form micro-holes in a glass-based object using either a one-step or a two-step method micro-holes formed by either process can be in the form of recesses or through-holes, depending on the application size of the micro-holes can be controlled by controlling the size of the annular vortex beam over the depth of focus range.
    Type: Application
    Filed: March 2, 2020
    Publication date: November 3, 2022
    Inventors: Anping Liu, Matthew Ryan Ross, Craig John Mancusi Ungaro, Erin Kathleen Watkins
  • Patent number: 11487069
    Abstract: An optical cable and method for forming an optical cable is provided. The cable includes a cable jacket including an inner surface defining a channel and an outer surface and also includes a plurality of optical fibers located within the channel. The cable includes a seam within the cable jacket that couples together opposing longitudinal edges of a wrapped thermoplastic sheet which forms the cable jacket and maintains the cable jacket in the wrapped configuration around the plurality of optical fibers. The method includes forming an outer cable jacket by wrapping a sheet of thermoplastic material around a plurality of optical core elements. The method includes melting together portions of thermoplastic material of opposing longitudinal edges of the wrapped sheet such that a seam is formed holding the sheet of thermoplastic material in the wrapped configuration around the core elements.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: November 1, 2022
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Joel Patrick Carberry, David Wesley Chiasson, Anping Liu, Eric Raymond Logan, Barada Kanta Nayak, Christopher Mark Quinn
  • Publication number: 20220212976
    Abstract: Methods of manufacturing a ribbon can comprise identifying a location of a nonuniformity in a characteristic of a molten portion of a moving ribbon. The methods can further comprise impinging a deflected pulsed laser beam on a heating zone comprising a location of a nonuniformity in the molten portion of the ribbon. In some embodiments, the heating zone can be elongated in a travel direction of a travel path of the moving ribbon. In some embodiments, the pulsed laser beam can be reflected off a reflective surface of a polygonal reflecting device rotating at a substantially constant angular velocity. In some embodiments, the methods can include impinging the deflected pulsed laser beam on a sensing device to generate a signal. The methods can further comprise calibrating a location of the deflected pulsed laser beam based on the signal from the sensing device.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 7, 2022
    Inventors: Xinghua Li, Anping Liu
  • Patent number: 11327223
    Abstract: A multimode optical fiber having a core region. The core region includes silica, has an outer radius r1, and has a maximum relative refractive index of about 1.5% or less. Additionally, the multimode optical fiber is configured to have an effective bandwidth of about 4.7 GHz-Km or greater for an excited portion of the core region that has a diameter greater than 50 microns, the effective bandwidth being at a wavelength that is within a range of between about 800 and about 1370 nm.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: May 10, 2022
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Kangmei Li, Ming-Jun Li, Anping Liu, Simit Mayank Patel, Jeffery Scott Stone
  • Publication number: 20220134475
    Abstract: Embodiments of the present disclosure include a optical assembly comprising: an axicon lens with spherical aberration configured to generate the laser beam focal line, an optical element set spaced part from the optical lens, and a focusing optical element spaced apart from the optical element set, wherein the axicon lens and the optical element set are translatable relative to each other along the laser beam propagation direction and wherein the focusing optical element is in a fixed position along the laser beam propagation direction.
    Type: Application
    Filed: October 26, 2021
    Publication date: May 5, 2022
    Inventors: Andreas Simon Gaab, Anping Liu, Jian-Zhi Jay Zhang
  • Publication number: 20220081342
    Abstract: A method for processing a transparent workpiece that includes directing a laser beam output by a beam source onto a phase-adjustment device such that the laser beam downstream the phase-adjustment device is an Airy beam and directing the Airy beam onto a surface of the transparent workpiece. The Airy beam forms an Airy beam focal region in the transparent workpiece, the Airy beam of the Airy beam focal region having a maximum intensity of 100 TW/cm2 or less, the Airy beam of the Airy beam focal region induces absorption in the transparent workpiece, the induced absorption producing a curved defect in the transparent workpiece.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 17, 2022
    Inventors: Anping Liu, Craig John Mancusi Ungaro
  • Publication number: 20220080531
    Abstract: A method includes directing a laser beam onto a phase-adjustment device such that the laser beam downstream the phase-adjustment device is a modified Airy beam having a modified Airy beam focal region having a main lobe and a plurality of side lobes. The main lobe has a lobe aspect ratio of 1.2 or greater.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 17, 2022
    Inventors: Anping Liu, Craig John Mancusi Ungaro
  • Patent number: 11256039
    Abstract: A method of cleaving an optical fiber comprises inserting the optical fiber through a bore of a holding member, securing the optical fiber to the holding member with a bonding agent, operating at least one laser to emit at least one laser beam, and directing the at least one laser beam from the at least one laser to the end face of the holding member. At least a portion of the at least one laser beam reflects off the end face of the holding member and is thereafter incident on an end portion of the optical fiber. The at least one laser beam cleaves the end portion of the optical fiber less than 20 ?m from the end face of the holding member. Related systems are also disclosed.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: February 22, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Joel Patrick Carberry, Minghan Chen, Ming-Jun Li, Anping Liu, Barada Kanta Nayak
  • Publication number: 20210325599
    Abstract: A multimode optical fiber having a core region. The core region includes silica, has an outer radius r1, and has a maximum relative refractive index of about 1.5% or less. Additionally, the multimode optical fiber is configured to have an effective bandwidth of about 4.7 GHz-Km or greater for an excited portion of the core region that has a diameter greater than 50 microns, the effective bandwidth being at a wavelength that is within a range of between about 800 and about 1370 nm.
    Type: Application
    Filed: March 29, 2021
    Publication date: October 21, 2021
    Inventors: Xin Chen, Kangmei Li, Ming-Jun Li, Anping Liu, Simit Mayank Patel, Jeffery Scott Stone
  • Publication number: 20210319197
    Abstract: The present disclosure provides an apparatus for optically capturing images using a display screen. The apparatus includes a sensor panel having a sensor substrate and an array of photosensitive pixels on an upper surface of the sensor substrate; a display panel disposed on the upper surface of the sensor substrate, the display panel having a display substrate, a plurality of display pixels on a first surface of the display substrate, and a black matrix on the first surface, wherein the black matrix includes a plurality of optical elements, each being located between neighboring ones of the display pixels, and wherein the sensor panel is in contact with a second surface of the display substrate opposing the first surface; and a cover sheet on the first surface of the display substrate. The black matrix includes a conductive material electrically coupled to a common electrode of the display panel.
    Type: Application
    Filed: November 14, 2017
    Publication date: October 14, 2021
    Inventors: Hsuanyeh Chang, Zachary Michael Thomas, Anping Liu
  • Publication number: 20210263250
    Abstract: An optical cable and method for forming an optical cable is provided. The cable includes a cable jacket including an inner surface defining a channel and an outer surface and also includes a plurality of optical fibers located within the channel. The cable includes a seam within the cable jacket that couples together opposing longitudinal edges of a wrapped thermoplastic sheet which forms the cable jacket and maintains the cable jacket in the wrapped configuration around the plurality of optical fibers. The method includes forming an outer cable jacket by wrapping a sheet of thermoplastic material around a plurality of optical core elements. The method includes melting together portions of thermoplastic material of opposing longitudinal edges of the wrapped sheet such that a seam is formed holding the sheet of thermoplastic material in the wrapped configuration around the core elements.
    Type: Application
    Filed: May 13, 2021
    Publication date: August 26, 2021
    Inventors: Joel Patrick Carberry, David Wesley Chiasson, Anping Liu, Eric Raymond Logan, Barada Kanta Nayak, Christopher Mark Quinn
  • Patent number: 10941070
    Abstract: Methods and apparatus provide for: cutting a thin glass sheet along a curved cutting line, where the curve is divided into a plurality of line segments; applying a laser beam and continuously moving the laser beam along the cutting line; applying a cooling fluid simultaneously with the application of the laser beam in order to propagate a fracture in the glass sheet along the cutting line; and varying one or more cutting parameters as the laser beam moves from one of the plurality of line segments to a next one of the plurality of line segments, wherein the one or more cutting parameters include at least one of: (i) a power of the laser beam, (ii) a speed of the movement, (iii) a pressure of the cooling fluid, and (iv) a flow rate of the cooling fluid.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: March 9, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Andrew Stephen Altman, Carlton Wesley Cole, Todd Benson Fleming, Anping Liu, James Joseph Watkins
  • Publication number: 20210053858
    Abstract: A control apparatus for controlling a thickness of a substrate, such as a glass ribbon. The control apparatus comprises a laser assembly and a shielding assembly. The laser assembly generates an elongated laser beam traveling in a propagation direction along an optical path. The shielding assembly comprises at least one shield selectively disposed in the optical path. The shield is configured to decrease an optical intensity of a region of the elongated laser beam. The shielding assembly is configured to change an intensity profile of the elongated laser beam from an initial intensity profile to a targeted intensity profile. A desired targeted intensity profile can be dictated by an arrangement of the shield(s) relative to the optical path, and can be selected to affect a temperature change at portions of the substrate determined to benefit from a reduction in thickness.
    Type: Application
    Filed: March 5, 2019
    Publication date: February 25, 2021
    Inventors: Anatoli Anatolyevich Abramov, Anping Liu, Michael Yoshiya Nishimoto, William Anthony Whedon, Jae Hyun Yu
  • Patent number: 10843956
    Abstract: Disclosed herein are transparent articles and methods and systems for processing transparent articles. Systems for processing transparent articles, e.g. cutting glass, may include at least one initial laser and at least one polarizing beam splitter, where the polarizing beam splitter is configured to split an initial laser beam into a plurality of laser beams, and wherein the plurality of laser beams are useful for processing transparent articles. Methods for processing transparent articles comprise creating at least one flaw in the transparent articles with a plurality of laser beams.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: November 24, 2020
    Assignee: Corning Incorporated
    Inventors: Anping Liu, Leonard Thomas Masters, Alexander Mikhailovich Streltsov
  • Patent number: 10830943
    Abstract: An optical fiber for converting a Gaussian laser beam into a Bessel laser beam may include a first segment optically coupled to a second segment with a transition region, the first segment having a first outer diameter greater than a second outer diameter of the second segment. The first segment may include a first core portion with a first cladding portion extending around the first core portion. The second segment may include a second core portion with a second cladding portion extending around the second core portion. The optical fiber may have a non-axisymmetric refractive index profile or may be coupled to an end cap with a non-axisymmetric refractive index profile.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: November 10, 2020
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Anping Liu
  • Publication number: 20200241213
    Abstract: A method of cleaving an optical fiber comprises inserting the optical fiber through a bore of a holding member, securing the optical fiber to the holding member with a bonding agent, operating at least one laser to emit at least one laser beam, and directing the at least one laser beam from the at least one laser to the end face of the holding member. At least a portion of the at least one laser beam reflects off the end face of the holding member and is thereafter incident on an end portion of the optical fiber. The at least one laser beam cleaves the end portion of the optical fiber less than 20 ?m from the end face of the holding member. Related systems are also disclosed.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Inventors: Joel Patrick Carberry, Minghan Chen, Ming-Jun Li, Anping Liu, Barada Kanta Nayak
  • Patent number: 10688599
    Abstract: A method for laser processing a transparent workpiece includes forming a contour line having defects in the transparent workpiece, which includes directing a pulsed laser beam oriented along a beam pathway through a beam converting element and through a phase modifying optical element such that the portion of the pulsed laser beam directed into the transparent workpiece includes a phase shifted focal line having a cross-sectional phase contour that includes phase contour ridges induced by the phase modifying optical element and extending along phase ridge lines. Moreover, the phase shifted focal line generates an induced absorption within the transparent workpiece to produce a defect within the transparent workpiece including a central defect region and a radial arm that extends outward from the central defect region in a radial defect direction oriented within 20° of the phase ridge lines of the phase shifted focal line.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: June 23, 2020
    Assignee: Corning Incorporated
    Inventors: Anping Liu, Matthew Ryan Ross