Patents by Inventor Anping Liu

Anping Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10620395
    Abstract: A system and method for marking a moving surface of a fiber optic cable is provided. The system includes a supply of the fiber optic cable, a laser generating device configured to generate a laser beam that forms markings by interacting with the material of the moving surface of the fiber optic cable. The system includes a movement device moving the fiber optic cable through the system at a speed of at least 50 m per minute. The system includes a laser directing device located in the path of the laser beam and configured to change the path of the laser beam to direct the laser beam to a plurality of discrete locations on the moving surface to form a series of marks on the moving surface. The moving surface includes a plurality of tracking indicia to allow the position of the moving surface to be determined.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 14, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Joel Patrick Carberry, Anping Liu, Eric John Mozdy, Barada Kanta Nayak
  • Patent number: 10610970
    Abstract: A method of forming an optical surface on an end portion of an optical fiber comprises inserting the optical fiber through a ferrule bore of a ferrule so that the end portion extends past an end face on the ferrule. At least one laser beam is emitted from at least one laser and directed to the end face of the ferrule. The at least one laser beam is shaped into an ellipse and comprises at least 90 percent linearly-polarized light incident on the end face of the ferrule as S-polarized light. The at least one laser is operated so that the S-polarized light reflects off the end face of the ferrule and cleaves the end portion of the optical fiber.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: April 7, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Joel Patrick Carberry, Anping Liu, Barada Kanta Nayak
  • Patent number: 10579195
    Abstract: The present disclosure provides an optical-capacitive sensor panel device. In one aspect, the panel device includes a transparent substrate having a first surface; an optical sensor array formed on the first surface of the transparent substrate, the optical sensor array including a plurality of photosensitive pixels spaced apart from each other and arranged on the first surface to form a lattice structure; a plurality of row electrodes formed on the optical sensor array and electrically coupled to a first group of the photosensitive pixels; a plurality of column electrodes formed on the optical sensor array crossing the row electrodes and electrically coupled to a second group of the photosensitive pixels; and an insulating layer formed between the row electrodes and the column electrodes.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: March 3, 2020
    Assignee: Bidirectional Display, Inc.
    Inventors: Hsuan-Yeh Chang, Anping Liu
  • Patent number: 10494290
    Abstract: Systems and methods utilizing two Airy beams to process a non-rounded edge of a glass substrate or to cleave a glass substrate are disclosed. The method includes generating first and second Airy beams and causing them to cross at a crossing to define a curved intensity profile in the vicinity of the crossing point where the first and second Airy beams have respective local radii of curvature RA and RB. The method also includes scanning the curved intensity profile either along the non-rounded outer edge or through the glass along a scan path to form on the glass substrate a rounded outer edge having a radius of curvature RE that is smaller than the first and second local radii of curvature RA and RB. The radius of curvature RE can be adjusted by changing a beam angle between the first and second Airy beams.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: December 3, 2019
    Assignee: Corning Incorporated
    Inventors: Minghan Chen, Ming-Jun Li, Anping Liu, Gaozhu Peng
  • Patent number: 10495530
    Abstract: Prism coupling systems and methods for characterizing curved parts are disclosed. A coupling surface of a coupling prism is interfaced to the curved outer surface of the curved part to define a coupling interface. Measurement light is directed through the coupling prism and to the interface, wherein the measurement light has a width of 3 mm or less. TE and TM mode spectra reflected from the interface are digitally captured. These mode spectra are processed to determine at least one characteristic of the curved part, such as the stress profile, compressive stress, depth of layer, refractive index profile and birefringence.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: December 3, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Anping Liu, Rostislav Vatchev Roussev, Robert Anthony Schaut
  • Patent number: 10469694
    Abstract: The present disclosure provides an image sensor panel and a method for capturing graphical information using the image sensor panel. In one aspect, the image sensor panel includes a substrate and a sensor array on the substrate, the sensor array including a plurality of photosensitive pixels. The substrate includes a first region defined by the sensor array and a second region other than the first region. The second region is optically transparent and has an area greater than that of the first region.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: November 5, 2019
    Assignee: Bidirectional Display, Inc.
    Inventors: Hsuan-Yeh Chang, Anping Liu
  • Patent number: 10454492
    Abstract: A conversion time and an acquisition time of an ADC can be estimated so that a speed of the ADC can be calibrated. An ADC circuit can perform M bit-trials in its conversion phase and continue performing additional bit-trials in a calibration mode. The ADC can count the number of additional bit-trials performed, e.g., X bit-trials, that occur before the next conversion phase, where additional bit-trials can be considered to be the number of available bit-trials during an acquisition time if the ADC continues performing bit-trials instead of sampling an input signal. The ADC can estimate the conversion time and the acquisition time using M and X. Then, the conversion time of the ADC can be calibrated by adjusting one or more of the comparison time, DAC settling delay, and logic propagation delay.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: October 22, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Akira Shikata, Junhua Shen, Anping Liu
  • Patent number: 10345604
    Abstract: An optical fiber for converting a Gaussian laser beam into a Bessel laser beam may include a first segment optically coupled to a second segment with a transition region, the first segment having a first outer diameter greater than a second outer diameter of the second segment. The first segment may include a first core portion with a first cladding portion extending around the first core portion. The first core portion may have an annular core region with a relative refractive index relative to the first cladding portion. The second segment may include a second core portion with a second cladding portion extending around the second core portion. The second core portion has a relative refractive index relative to the second cladding portion and the relative refractive index of the first annular core region may be substantially equal to the relative refractive index of the second core portion.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 9, 2019
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Anping Liu
  • Patent number: 10317635
    Abstract: An optical communication cable and related systems and methods are provided. The optical cable includes a plurality of wrapped core elements, and the outer surfaces of adjacent wrapped core elements are joined together by discrete bond sections. The discrete bonds sections may be structures such as laser welds, ultrasonic welds, or adhesive material. The discrete bonds hold the wrapped core elements together in the wrapped pattern, such as an SZ stranding pattern.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: June 11, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Anne Germaine Bringuier, Joel Patrick Carberry, David Wesley Chiasson, Anping Liu, Barada Kanta Nayak
  • Publication number: 20190149687
    Abstract: The present disclosure provides an image sensor panel and a method for capturing graphical information using the image sensor panel. In one aspect, the image sensor panel includes a substrate and a sensor array on the substrate, the sensor array including a plurality of photosensitive pixels. The substrate includes a first region defined by the sensor array and a second region other than the first region. The second region is optically transparent and has an area greater than that of the first region.
    Type: Application
    Filed: December 10, 2018
    Publication date: May 16, 2019
    Inventors: Hsuan-Yeh Chang, Anping Liu
  • Publication number: 20190135678
    Abstract: Disclosed herein are transparent articles and methods and systems for processing transparent articles. Systems for processing transparent articles, e.g. cutting glass, may include at least one initial laser and at least one polarizing beam splitter, where the polarizing beam splitter is configured to split an initial laser beam into a plurality of laser beams, and wherein the plurality of laser beams are useful for processing transparent articles. Methods for processing transparent articles comprise creating at least one flaw in the transparent articles with a plurality of laser beams.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 9, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Anping LIU, Leonard Thomas MASTERS, Alexander Mikhailovich STRELTSOV
  • Publication number: 20190129093
    Abstract: An optical fiber for converting a Gaussian laser beam into a Bessel laser beam may include a first segment optically coupled to a second segment with a transition region, the first segment having a first outer diameter greater than a second outer diameter of the second segment. The first segment may include a first core portion with a first cladding portion extending around the first core portion. The second segment may include a second core portion with a second cladding portion extending around the second core portion. The optical fiber may have a non-axisymmetric refractive index profile or may be coupled to an end cap with a non-axisymmetric refractive index profile.
    Type: Application
    Filed: October 24, 2018
    Publication date: May 2, 2019
    Inventors: Ming-Jun Li, Anping Liu
  • Publication number: 20190025534
    Abstract: A system and method for marking a moving surface of a fiber optic cable is provided. The system includes a supply of the fiber optic cable, a laser generating device configured to generate a laser beam that forms markings by interacting with the material of the moving surface of the fiber optic cable. The system includes a movement device moving the fiber optic cable through the system at a speed of at least 50 m per minute. The system includes a laser directing device located in the path of the laser beam and configured to change the path of the laser beam to direct the laser beam to a plurality of discrete locations on the moving surface to form a series of marks on the moving surface. The moving surface includes a plurality of tracking indicia to allow the position of the moving surface to be determined.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 24, 2019
    Inventors: Joel Patrick Carberry, Anping Liu, Eric John Mozdy, Barada Kanta Nayak
  • Publication number: 20190025141
    Abstract: Prism coupling systems and methods for characterizing curved parts are disclosed. A coupling surface of a coupling prism is interfaced to the curved outer surface of the curved part to define a coupling interface. Measurement light is directed through the coupling prism and to the interface, wherein the measurement light has a width of 3 mm or less. TE and TM mode spectra reflected from the interface are digitally captured. These mode spectra are processed to determine at least one characteristic of the curved part, such as the stress profile, compressive stress, depth of layer, refractive index profile and birefringence.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: Anping Liu, Rostislav Vatchev Roussev, Robert Anthony Schaut
  • Patent number: 10156488
    Abstract: Prism coupling systems and methods for characterizing curved parts are disclosed. A coupling surface of a coupling prism is interfaced to the curved outer surface of the curved part to define a coupling interface. Measurement light is directed through the coupling prism and to the interface, wherein the measurement light has a width of 3 mm or less. TE and TM mode spectra reflected from the interface are digitally captured. These mode spectra are processed to determine at least one characteristic of the curved part, such as the stress profile, compressive stress, depth of layer, refractive index profile and birefringence.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: December 18, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Anping Liu, Rostislav Vatchev Roussev, Robert Anthony Schaut
  • Patent number: 10154166
    Abstract: The present disclosure provides an image sensor panel and a method for capturing graphical information using the image sensor panel. In one aspect, the image sensor panel includes a substrate and a sensor array on the substrate, the sensor array including a plurality of photosensitive pixels. The substrate includes a first region defined by the sensor array and a second region other than the first region. The second region is optically transparent and has an area greater than that of the first region.
    Type: Grant
    Filed: September 18, 2016
    Date of Patent: December 11, 2018
    Assignee: Bidirectional Display Inc.
    Inventors: Hsuan-Yeh Chang, Anping Liu
  • Patent number: 10144668
    Abstract: Methods and apparatus for cutting a glass sheet along a cutting line into a desired shape. A laser source is configured to apply a laser beam to a beam location on the cutting line of the glass sheet. A source of cooling fluid is configured to apply a cooling fluid to a cooling band on the glass sheet to reduce a temperature of the glass sheet along the cooling path while elevating the temperature of the glass sheet at the beam location with the laser beam. The source of cooling fluid is configured to apply the cooling path as a cooling ring to circumscribe the beam location on the cutting line with the cooling band circumferentially spaced from the beam location while the cooling path and the beam location move simultaneously together in order to propagate a fracture in the glass sheet along the cutting line.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: December 4, 2018
    Assignee: Corning Incorporated
    Inventors: Andrew Stephen Altman, Todd Benson Fleming, Anping Liu, James Joseph Watkins
  • Patent number: 10133018
    Abstract: A crush resistant, kink resistant optical cable including crush resistant, kink resistant optical fiber buffer tubes and systems and method for making the same are provided. The buffer tubes include a depression pattern formed along the outer surface of the buffer tube. The depression pattern provides areas of decreased thickness in the buffer tube facilitating flexibility and kink resistance. The system and method relates to laser ablation for forming the depression pattern in the buffer tube.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: November 20, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Joel Patrick Carberry, David Wesley Chiasson, Jeffrey Dean Danley, Anping Liu, Barada Kanta Nayak
  • Patent number: 10114190
    Abstract: A system and method for marking a moving surface of a fiber optic cable is provided. The system includes a supply of the fiber optic cable, a laser generating device configured to generate a laser beam that forms markings by interacting with the material of the moving surface of the fiber optic cable. The system includes a movement device moving the fiber optic cable through the system at a speed of at least 50 m per minute. The system includes a laser directing device located in the path of the laser beam and configured to change the path of the laser beam to direct the laser beam to a plurality of discrete locations on the moving surface to form a series of marks on the moving surface. The moving surface includes a plurality of tracking indicia to allow the position of the moving surface to be determined.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: October 30, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Joel Patrick Carberry, Anping Liu, Eric J. Mozdy, Barada Kanta Nayak
  • Publication number: 20180260056
    Abstract: The present disclosure provides an optical-capacitive sensor panel device. In one aspect, the panel device includes a transparent substrate having a first surface; an optical sensor array formed on the first surface of the transparent substrate, the optical sensor array including a plurality of photosensitive pixels spaced apart from each other and arranged on the first surface to form a lattice structure; a plurality of row electrodes formed on the optical sensor array and electrically coupled to a first group of the photosensitive pixels; a plurality of column electrodes formed on the optical sensor array crossing the row electrodes and electrically coupled to a second group of the photosensitive pixels; and an insulating layer formed between the row electrodes and the column electrodes.
    Type: Application
    Filed: May 14, 2018
    Publication date: September 13, 2018
    Inventors: Hsuan-Yeh Chang, Anping Liu